Automatic Monitoring of Forbidden Areas to Prevent Illegal Accesses | SpringerLink
Skip to main content

Automatic Monitoring of Forbidden Areas to Prevent Illegal Accesses

  • Conference paper
Pattern Recognition and Image Analysis (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3687))

Included in the following conference series:

Abstract

Surveillance systems that automatically detect illegal behaviors performed by unaware people have a wide range of applications: security, healthcare, conservation of cultural heritage and so on. In particular monitoring public areas such as museums and archaeological sites is a challenging problem that has to be solved in order to avoid irreparable damages to historical heritage. In this paper a system able to check by common digital RGB cameras unexpected accesses to forbidden areas in a public museum is presented. The reliability of the proposed framework is shown by large experimental tests performed in the Messapic Museum of Egnathia (Italy) .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wu, Y., Huang, T.S.: Vision-Based Gesture Recognition: A Review. In: Braffort, A., Gibet, S., Teil, D., Gherbi, R., Richardson, J. (eds.) GW 1999. LNCS (LNAI), vol. 1739, p. 103. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Cedras, C., Shah, M.: Motion based recognition: a survey. Image and Vision Computing 13(2), 129–155 (1995)

    Google Scholar 

  3. Gravila, D.M.: The visual analysis of human movement: a survey. Computer Vision Image Understanding 73(1), 82–98 (1999)

    Article  Google Scholar 

  4. Ben-Arie, J., Wang, Z., Pandit, P., Rajaram, S.: Human Activity Recognition Using Multidimensional Indexing. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(8), 1091–1104 (2002)

    Article  Google Scholar 

  5. Ren, H., Xu, G.: Human Action Recognition in a Smart Classroom. In: Fifth IEEE International Conference on Automatic Face and Gesture Recognition (2002)

    Google Scholar 

  6. Galata, A., Johnson, N., Hogg, D.: Learning Variable-Length Markov Models of Behavior. Computer Vision and Image Understanding 81, 398–413 (2001)

    Article  MATH  Google Scholar 

  7. Elgammal, A., Shet, V., Yacoob, Y., Davis, L.S.: Learning Dynamics for Exemplarbased Gesture Recognition. In: proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2003), June 16-22, Madison, Wisconsin (2003)

    Google Scholar 

  8. Collins, R.T., Lipton, A.J., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O.: A System for Video Surveillance and Monitoring, Technical Report CMU-RI-TR-00-12, Carnagie Mellon University (2000)

    Google Scholar 

  9. Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: Real-time tracking of the human body. IEEE Transactions on PAMI 19(7), 780–785 (1997)

    Google Scholar 

  10. Boulay, B., Bremond, F., Thonnat, M.: Human Posture Recognition in Video Sequence. In: The Proc. Joint IEEE International Workshop on VS-PETS, Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 23–29 (2003)

    Google Scholar 

  11. Remagnino, P., Jones, G.A.: Classifying Surveillance Events from Attributes and Behavior. In: The Proceeding of the BMVC, Manchester, September 10-13, pp. 685–694 (2001)

    Google Scholar 

  12. Stauffer, C., Grimson, W.E.L.: Learning Patterns of Activity Using Real-Time Tracking. IEEE transactions on PAMI 22(8), 747–757 (2000)

    Google Scholar 

  13. Ayers, D., Shah, M.: Monitoring human behavior from video taken in an office environment. Image and Vision Computing 19, 833–846 (2001)

    Article  Google Scholar 

  14. Nair, V., Clark, J.J.: Automated Visual Surveillance Using Hidden Markov Models. In: The proc. of the 15th Vision Interface Conf., Calgary, May 2002, pp. 88–92 (2002)

    Google Scholar 

  15. Horprasert, T., Harwood, D., Davis, L.S.: A Statistical Approach for Real-time Robust Background Subtraction and Shadow Detection. In: Proc. IEEE ICCV 1999 FRAME-RATE Workshop, Kerkyra, Greece (September 1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leo, M., D’Orazio, T., Caroppo, A., Martiriggiano, T., Spagnolo, P. (2005). Automatic Monitoring of Forbidden Areas to Prevent Illegal Accesses. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_70

Download citation

  • DOI: https://doi.org/10.1007/11552499_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28833-6

  • Online ISBN: 978-3-540-31999-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics