Image Reconstruction with Polar Zernike Moments | SpringerLink
Skip to main content

Image Reconstruction with Polar Zernike Moments

  • Conference paper
Pattern Recognition and Image Analysis (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3687))

Included in the following conference series:

Abstract

As an orthogonal moment, Zernike moment (ZM) is an attractive image feature in a number of application scenarios due to its distinguishing properties. However, we find that for digital images, the commonly used Cartesian method for ZM computation has compromised the advantages of ZMs because of their non-ideal accuracy stemming from two inherent sources of errors, i.e., the geometric error and the integral error. There exists considerable errors in image reconstruction using ZMs calculated with the Cartesian method. In this paper, we propose a polar coordinate based algorithm for the computation of ZMs, which avoids the two kinds of errors and greatly improves the accuracy of ZM computation. We present solutions to the key issues in ZM computation under polar coordinate system, including the derivation of computation formulas, the polar pixel arrangement scheme, and the interpolation-based image conversion etc. As a result, ZM-based image reconstruction can be performed much more accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Teague, M.R.: Image analysis via the general theory of moments. J. Optical Soc. Am. 70, 920–930 (1980)

    Article  MathSciNet  Google Scholar 

  2. Khotanzad, A., Hong, Y.H.: Invariant image recognition by Zernike moments. IEEE Trans. Pattern Anal. Match. Intell. 12(5), 489–497 (1990)

    Article  Google Scholar 

  3. Mukundan, R., Ramakrishnan, K.: Moment Functions in Image Analysis: Theory and Applications. World Scientific, Singapore (1998)

    MATH  Google Scholar 

  4. Teh, C., Chin, R.T.: On image analysis by the methods of moments. IEEE Trans. Pattern Analysis and Machine Intelligence 10(4), 496–513 (1988)

    Article  MATH  Google Scholar 

  5. Trier, O.D., Jain, A.K., Taxt, T.: Feature extraction methods for character recognition-a survey. Pattern Recognition 29(4), 641–662 (1996)

    Article  Google Scholar 

  6. Liao, S.X., Pawlak, M.: On the accuracy of Zernike moments for image analysis. IEEE Trans. Pattern Analysis and Machine Intelligence 20(12), 1358–1364 (1998)

    Article  Google Scholar 

  7. Pawlak, M., Liao, S.X.: On the recovery of a function on a circular domain. IEEE Transactions on Information Theory 48(10), 2736–2753 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Mukundan, R., Ramakrishnan, K.: Fast computation of Legendre and Zernike moments. Pattern Recognition 28(9), 1433–1442 (1995)

    Article  MathSciNet  Google Scholar 

  9. Ginis, H.S., Plainis, S., Pallikaris, A.: Variability of wavefront aberration measurements in small pupil sizes using a clinical shack-hartman aberrometer. BMC Ophthalmology 4(1) (2004)

    Google Scholar 

  10. Xin, Y., Liao, S., Pawlak, M.: A multibit geometrically robust image watermark based on Zernike moments. In: International Conference on Pattern Recognition (ICPR 2004) , vol. IV, pp. 861–864 (2004)

    Google Scholar 

  11. Xin, Y., Liao, S., Pawlak, M.: Robust date hiding with image invariants. In: IEEE Canadian Conference on Electrical and Computer Engineering (CCECE 2005), Saskatoon, Canada (May 1-4, 2005)

    Google Scholar 

  12. Xin, Y., Liao, S., Pawlak, M.: On the improvement of rotational invariance of zernike moments. In: International Conference on Image Processing, ICIP 2005, Genova, Italy (September 11-14, 2005)

    Google Scholar 

  13. Liao, S.X.: Image Analysis by Moments, Ph.D. Thesis, University of Manitoba (1993)

    Google Scholar 

  14. Flusser, J.: Refined moment calculation using image block representation. IEEE Transactions on Image Processing 9(11), 1977–1978 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Keys, R.G.: Cubic convolution interpolation for digital image processing. IEEE Trans. ASSP 29(6), 1153–1160 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jiang, X.Y., Bunke, H.: Simple and fast computation of moments. Pattern Recognition 24(8), 801–806 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xin, Y., Pawlak, M., Liao, S. (2005). Image Reconstruction with Polar Zernike Moments. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_45

Download citation

  • DOI: https://doi.org/10.1007/11552499_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28833-6

  • Online ISBN: 978-3-540-31999-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics