Class-Specific Discriminant Non-negative Matrix Factorization for Frontal Face Verification | SpringerLink
Skip to main content

Class-Specific Discriminant Non-negative Matrix Factorization for Frontal Face Verification

  • Conference paper
Pattern Recognition and Image Analysis (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3687))

Included in the following conference series:

Abstract

In this paper, a supervised feature extraction method having both non-negative bases and weights is proposed. The idea is to extend the Non-negative Matrix Factorization (NMF) algorithm in order to extract features that enforce not only the spatial locality, but also the separability between classes in a discriminant manner. The proposed method incorporates discriminant constraints inside the NMF decomposition in a class specific manner. Thus, a decomposition of a face to its discriminant parts is obtained and new update rules for both the weights and the basis images are derived. The introduced methods have been applied to the problem of frontal face verification using the well known XM2VTS database. The proposed algorithm greatly enhance the performance of NMF for frontal face verification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kirby, M., Sirovich, L.: Application of the karhunen-loeve procedure for the characterization of human faces. IEEE Transactions Pattern Analysis and Machine Intelligence 12(1), 103–108 (1990)

    Article  Google Scholar 

  2. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  3. Li, S.Z., Hou, X.W., Zhang, H.J.: Learning spatially localized, parts-based representation. In: CVPR, Kauai, HI, USA, December 8-14, pp. 207–212 (2001)

    Google Scholar 

  4. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)

    Article  Google Scholar 

  5. Guillamet, D., Vitria, J., Schiele, B.: Introducing a weighted non-negative matrix factorization for image classification. Pattern Recognition Letters 24(14), 2447–2454 (2003)

    Article  MATH  Google Scholar 

  6. Weixiang, L., Zheng, N.: Non-negative matrix factorization based methods for object recognition. Pattern Recognition Letters 25(9-10), 893–897 (2004)

    Google Scholar 

  7. Guillamet, D., Vitria: Evaluation of distance metrics for recognition based on non-negative matrix factorization. Pattern Recognition Letters 24(9-10), 1599–1605 (2003)

    Article  MATH  Google Scholar 

  8. Wild, S., Curry, J., Dougherty, A.: Improving non-negative matrix factorizations through structured initialization. Pattern Recognition 37, 2217–2232 (2004)

    Article  Google Scholar 

  9. Donoho, D., Stodden, V.: When does non-negative matrix factorization give a correct decomposition into parts? Advances in Neural Information Processing Systems 17 (2004)

    Google Scholar 

  10. Tefas, A., Kotropoulos, C., Pitas, I.: Face verification using elastic graph matching based on morphological signal decomposition. Signal Processing 82(6), 833–851 (2002)

    Article  MATH  Google Scholar 

  11. Tefas, A., Kotropoulos, C., Pitas, I.: Using support vector machines to enhance the performance of elastic graph matching for frontal face authentication. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(7), 735–746 (2001)

    Article  Google Scholar 

  12. Kotropoulos, C., Tefas, A., Pitas, I.: Frontal face authentication using discriminating grids with morphological feature vectors. IEEE Transactions on Multimedia 2(1), 14–26 (2000)

    Article  Google Scholar 

  13. Kotropoulos, C., Tefas, A., Pitas, I.: Frontal face authentication using morphological elastic graph matching. IEEE Transactions on Image Processing 9(4), 555–560 (2000)

    Article  Google Scholar 

  14. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: NIPS, pp. 556–562 (2000)

    Google Scholar 

  15. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. John Hopkins Univ. Press, Baltimore (1996)

    MATH  Google Scholar 

  16. Messer, K., Matas, J., Kittler, J.V., Luettin, J., Maitre, G.: Xm2vtsdb: The extended m2vts database. In: AVBPA 1999, pp. 72–77 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zafeiriou, S., Tefas, A., Buciu, I., Pitas, I. (2005). Class-Specific Discriminant Non-negative Matrix Factorization for Frontal Face Verification. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_24

Download citation

  • DOI: https://doi.org/10.1007/11552499_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28833-6

  • Online ISBN: 978-3-540-31999-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics