On the Automatic 2D Retinal Vessel Extraction | SpringerLink
Skip to main content

On the Automatic 2D Retinal Vessel Extraction

  • Conference paper
Pattern Recognition and Image Analysis (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3687))

Included in the following conference series:

Abstract

Retinal vessel extraction has become an important task of medical image processing applications in order to diagnose ocular diseases. In this paper, a novel methodology is proposed to extract vessels automatically from retinal angiographies. The proposed methodology has been implemented by means of Cellular Neural Networks techniques to take advantage of their capabilities of massively parallel processing reducing computation time required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gang, L., Chutatape, O., Krishnan, S.M.: Detection and Measurement of Retinal Vessels in Fundus Images using Amplitude Modified Second-Order Gaussian Filter. In: IEEE Trans. Biomed. Eng., vol. 49, pp. 168–172 (2002)

    Google Scholar 

  2. Valverde, F., Guil, N., Munoz, J., Li, Q., Aoyama, M., Doi, K.: A deformable model for image segmentation in noisy medical images. In: Proc. Int. IEEE Conf. Image Processing, vol. 3, pp. 82–85 (2001)

    Google Scholar 

  3. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic Active Contours. International Journal of Computer Vision 22, 61–79 (1997)

    Article  MATH  Google Scholar 

  4. Goldenberg, R., Kimmel, R., Rivlin, E., Rudzdky, M.: Fast geodesic active contours. IEEE Trans. Image Processing 10, 1467–1475 (2001)

    Article  Google Scholar 

  5. Chua, L.O., Yang, L.: Cellular Neural Networks: Theory. IEEE Trans. Circuits Syst. 35, 1257–1272 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of Blood Vessels in Retinal Images using Two-Dimensional Matched Filters. IEEE Trans. Med. Imag. 8 (1989)

    Google Scholar 

  7. Roska, T., Chua, L.O.: The CNN Universal Machine: An Analogic Array Comuter. IEEE Trans. Circuits Syst. II 40, 163–173 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Vilariño, D., Cabello, D., Pardo, X., Brea, V.M.: Cellular neural networks and active contours: a tool for image segmentation. Image and Vision Computing 21, 189–204 (2004)

    Article  Google Scholar 

  9. Chua, L., Roska, T.: The CNN paradigm. IEEE Trans. Circuits Syst. 40, 147–156 (1993)

    MATH  MathSciNet  Google Scholar 

  10. Eviatar, H., Somorjai, R.L.: A fast, simple active contour algorithm for biomedical images. Pattern Recogn. Lett. 17, 969–974 (1996)

    Article  Google Scholar 

  11. Miles, F., Nuttall, A.: Matched filter estimation of serial blood vessel diameters from video images. IEEE Trans. Med. Imag. 12, 147–152 (1993)

    Article  Google Scholar 

  12. Sonka, M., Winninford, M.D., Collins, S.M.: Robust Simultaneous Detection of Coronary Borders in Complex Images. IEEE Trans. Med. Imag. 14, 151–161 (1995)

    Article  Google Scholar 

  13. Thackray, B.D., Nelson, A.C.: Semi-Automatic Segmentation of Vascular Network Images Using a Rotating Structuring Element (ROSE) with Mathematical Morphology and Dual Feature Thresholding. IEEE Trans. Med. Imag. 12, 385–392 (1993)

    Article  Google Scholar 

  14. Figueiredo, M.A.T., Leitão, J.M.N.: A nonsmoothing approach to the estimation of vessel contours in angiograms. IEEE Trans. Med. Imag. 14, 162–172 (1995)

    Article  Google Scholar 

  15. Cserey, G., Rekeczky, C., Foldesy, P.: PDE Based Histogram Modification with Embedded Morphological Processing of the Level-sets. In: Proc. 7th IEEE Int. Workshop CNNs and their Applications, pp. 315–322 (2002)

    Google Scholar 

  16. Rekeczky, C., Schultz, A., Szatmari, I., Roska, T., Chua, L.O.: Image Segmentation and Edge Detection via Constrained Diffusion and Adaptive Morphology: a CNN approach to Bubble/debris Image Enhancement. In: Proc. 6th Int. Symp. Nonlinear Theory and its Applications (NOLTA 1997), pp. 209–212 (1997)

    Google Scholar 

  17. Vilariño, D., Rekeczky, C.: Pixel-Level Snakes on the CNNUM: Algorithm Design, On-Chip Implementation and Applications. International Journal of Circuit Theory and Applications 33, 17–51 (2005)

    Article  MATH  Google Scholar 

  18. Rekeczky, C.: MATCNN - Analogic Simulation Toolbox for Matlab. Technical report, Analogic Neural Computing Lab., Hungarian Academy of Sciences (1997)

    Google Scholar 

  19. Kozek, T., Wu, C.W., Zarandy, A., Chen, H., Roska, T., Kunt, M., Chua, L.: New results and measurements related to some tasks in object-oriented dynamic image coding using CNN universal chips. IEEE Trans. Circuits Syst. Video Technol. 7, 606–614 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alonso-Montes, C., Vilariño, D.L., Penedo, M.G. (2005). On the Automatic 2D Retinal Vessel Extraction. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_19

Download citation

  • DOI: https://doi.org/10.1007/11552499_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28833-6

  • Online ISBN: 978-3-540-31999-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics