Abstract
Retinal vessel extraction has become an important task of medical image processing applications in order to diagnose ocular diseases. In this paper, a novel methodology is proposed to extract vessels automatically from retinal angiographies. The proposed methodology has been implemented by means of Cellular Neural Networks techniques to take advantage of their capabilities of massively parallel processing reducing computation time required.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gang, L., Chutatape, O., Krishnan, S.M.: Detection and Measurement of Retinal Vessels in Fundus Images using Amplitude Modified Second-Order Gaussian Filter. In: IEEE Trans. Biomed. Eng., vol. 49, pp. 168–172 (2002)
Valverde, F., Guil, N., Munoz, J., Li, Q., Aoyama, M., Doi, K.: A deformable model for image segmentation in noisy medical images. In: Proc. Int. IEEE Conf. Image Processing, vol. 3, pp. 82–85 (2001)
Caselles, V., Kimmel, R., Sapiro, G.: Geodesic Active Contours. International Journal of Computer Vision 22, 61–79 (1997)
Goldenberg, R., Kimmel, R., Rivlin, E., Rudzdky, M.: Fast geodesic active contours. IEEE Trans. Image Processing 10, 1467–1475 (2001)
Chua, L.O., Yang, L.: Cellular Neural Networks: Theory. IEEE Trans. Circuits Syst. 35, 1257–1272 (1988)
Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of Blood Vessels in Retinal Images using Two-Dimensional Matched Filters. IEEE Trans. Med. Imag. 8 (1989)
Roska, T., Chua, L.O.: The CNN Universal Machine: An Analogic Array Comuter. IEEE Trans. Circuits Syst. II 40, 163–173 (1993)
Vilariño, D., Cabello, D., Pardo, X., Brea, V.M.: Cellular neural networks and active contours: a tool for image segmentation. Image and Vision Computing 21, 189–204 (2004)
Chua, L., Roska, T.: The CNN paradigm. IEEE Trans. Circuits Syst. 40, 147–156 (1993)
Eviatar, H., Somorjai, R.L.: A fast, simple active contour algorithm for biomedical images. Pattern Recogn. Lett. 17, 969–974 (1996)
Miles, F., Nuttall, A.: Matched filter estimation of serial blood vessel diameters from video images. IEEE Trans. Med. Imag. 12, 147–152 (1993)
Sonka, M., Winninford, M.D., Collins, S.M.: Robust Simultaneous Detection of Coronary Borders in Complex Images. IEEE Trans. Med. Imag. 14, 151–161 (1995)
Thackray, B.D., Nelson, A.C.: Semi-Automatic Segmentation of Vascular Network Images Using a Rotating Structuring Element (ROSE) with Mathematical Morphology and Dual Feature Thresholding. IEEE Trans. Med. Imag. 12, 385–392 (1993)
Figueiredo, M.A.T., Leitão, J.M.N.: A nonsmoothing approach to the estimation of vessel contours in angiograms. IEEE Trans. Med. Imag. 14, 162–172 (1995)
Cserey, G., Rekeczky, C., Foldesy, P.: PDE Based Histogram Modification with Embedded Morphological Processing of the Level-sets. In: Proc. 7th IEEE Int. Workshop CNNs and their Applications, pp. 315–322 (2002)
Rekeczky, C., Schultz, A., Szatmari, I., Roska, T., Chua, L.O.: Image Segmentation and Edge Detection via Constrained Diffusion and Adaptive Morphology: a CNN approach to Bubble/debris Image Enhancement. In: Proc. 6th Int. Symp. Nonlinear Theory and its Applications (NOLTA 1997), pp. 209–212 (1997)
Vilariño, D., Rekeczky, C.: Pixel-Level Snakes on the CNNUM: Algorithm Design, On-Chip Implementation and Applications. International Journal of Circuit Theory and Applications 33, 17–51 (2005)
Rekeczky, C.: MATCNN - Analogic Simulation Toolbox for Matlab. Technical report, Analogic Neural Computing Lab., Hungarian Academy of Sciences (1997)
Kozek, T., Wu, C.W., Zarandy, A., Chen, H., Roska, T., Kunt, M., Chua, L.: New results and measurements related to some tasks in object-oriented dynamic image coding using CNN universal chips. IEEE Trans. Circuits Syst. Video Technol. 7, 606–614 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Alonso-Montes, C., Vilariño, D.L., Penedo, M.G. (2005). On the Automatic 2D Retinal Vessel Extraction. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_19
Download citation
DOI: https://doi.org/10.1007/11552499_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28833-6
Online ISBN: 978-3-540-31999-3
eBook Packages: Computer ScienceComputer Science (R0)