Boosting Feature Selection | SpringerLink
Skip to main content

Boosting Feature Selection

  • Conference paper
Pattern Recognition and Data Mining (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3686))

Included in the following conference series:

  • 2170 Accesses

Abstract

It is possible to reduce the error rate of a single classifier using a classifier ensemble. However, any gain in performance is undermined by the increased computation of performing classification several times. Here the Adaboost FS algorithm is proposed which builds on two popular areas of ensemble research: Adaboost and Ensemble Feature Selection (EFS). The aim of Adaboost FS is to reduce the number of features used by each base classifer and hence the overall computation required by the ensemble. To do this the algorithm combines a regularised version of Boosting Adaboost Reg [1] with a floating feature search for each base classifier.

Adaboost FS is compared using four benchmark data sets to Adaboost All , which uses all features and to Adaboost RSM , which uses a random selection of features. Performance is assessed based on error rate, ensemble error and diversity, and the total number of features used for classification. Results show that Adaboost FS achieves a lower error rate and higher diversity than Adaboost All , and achieves a lower error rate and comparable diversity to Adaboost RSM . However, over the other methods Adaboost FS produces a significant reduction in the number of features required for classification in each base classifier and the entire ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rätsch, G., Onoda, T., Müller, K.R.: Soft margins for adaboost. Machine Learning 42, 287–320 (2001)

    Article  MATH  Google Scholar 

  2. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proc. 13th International Conference on Machine Learning, pp. 148–156 (1996)

    Google Scholar 

  3. Schapire, R., Freund, Y., Bartlett, P., Lee, W.: Boosting the margin: A new explanation for the effectiveness of voting methods. The Annuals of Statistics, 1651–1686 (1998)

    Google Scholar 

  4. Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: A survey and categorisation. Information Fusion 6, 5–20 (2005)

    Article  Google Scholar 

  5. Quinlan, J.R.: Bagging, boosting and c4.5. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence, pp. 725–730 (1996)

    Google Scholar 

  6. Schapire, R., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Machine Learning 37, 297–336 (1999)

    Article  MATH  Google Scholar 

  7. Tieu, K., Viola, P.: Boosting image retrieval. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 228–235 (2000)

    Google Scholar 

  8. Ho, T.: The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 832–844 (1998)

    Article  Google Scholar 

  9. Bryll, R., Gutierrez-Osuna, R., Quek, F.: Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recognition 36, 1291–1302 (2003)

    Article  MATH  Google Scholar 

  10. Cunningham, P., Carney, J.: Diversity versus quality in classification ensembles based on feature selection. In: Lopez de Mantaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 109–116. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Guerra-Salcedo, C., Whitley, D.: Feature selection mechanisms for ensemble creation: a genetic search perspective. In: AAAI 1999 (1999)

    Google Scholar 

  12. Tsymbal, A., Pechenizkiy, M., Cunningham, P.: Diversity in search strategies for ensemble feature selection. Information Fusion 6, 83–98 (2005)

    Article  Google Scholar 

  13. Günter, S., Bunke, H.: Feature selection algorithms for the generation of multiple classifier systems and their application to handwritten word recognition. Pattern Recognition 25, 1323–1336 (2004)

    Article  Google Scholar 

  14. Kudo, M., Sklansky, J.: Comparison of algorithms that select features for pattern classifiers. Pattern Recognition 33, 25–41 (2000)

    Article  Google Scholar 

  15. Pudil, P., Novovivčová, J., Kittler, J.: Floating search methods in feature selection. Pattern Recognition Letters 15, 1119–1125 (1994)

    Article  Google Scholar 

  16. Blake, C., Merz, C.: UCI repository of machine learning databases (1998)

    Google Scholar 

  17. Feiss, J.: Statistical methods for rates and proportions (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Redpath, D.B., Lebart, K. (2005). Boosting Feature Selection. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Data Mining. ICAPR 2005. Lecture Notes in Computer Science, vol 3686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11551188_33

Download citation

  • DOI: https://doi.org/10.1007/11551188_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28757-5

  • Online ISBN: 978-3-540-28758-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics