Smooth Bayesian Kernel Machines | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3697))

Included in the following conference series:

  • 2883 Accesses

Abstract

In this paper, we consider the possibility of obtaining a kernel machine that is sparse in feature space and smooth in output space. Smooth in output space implies that the underlying function is supposed to have continuous derivatives up to some order. Smoothness is achieved by applying a roughness penalty, a concept from the area of functional data analysis. Sparseness is taken care of by automatic relevance determination. Both are combined in a Bayesian model, which has been implemented and tested. Test results are presented in the paper.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/11550907_163 .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aizerman, M., Braverman, E., Rozonoèr, L.: Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control 25, 821–837 (1964)

    Google Scholar 

  2. Schölkopf, B., Smola, A.: Learning with Kernels. In: Adaptive Computation and Machine Learning. The MIT Press, Cambridge (2002)

    Google Scholar 

  3. Vapnik, V.: The Nature of Statistical Learning Theory. In: Statistics for Engineering and Information Science. Springer, New York (1995)

    Google Scholar 

  4. Lee, Y., Mangasarian, O.: SSVM: A smooth support vector machine for classification. Computational Optimization and Applications 20, 5–22 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Wahba, G.: Spline Models for Observational Data. In: CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, vol. 59 (1990)

    Google Scholar 

  6. Green, P., Silverman, B.: Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach. Chapman and Hall, Boca Raton (1993)

    Google Scholar 

  7. Ramsay, J., Silverman, B.: Applied Functional Data Analysis. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  8. Ramsay, J., Silverman, B.: Functional Data Analysis. Springer Series in Statistics. Springer, New York (1997)

    MATH  Google Scholar 

  9. MacKay, D.: A practical bayesian framework for backprop networks. Neural Computation 4, 448–472 (1992)

    Article  Google Scholar 

  10. Tipping, M.: Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1, 211–244 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Tipping, M., Faul, A.: Fast marginal likelihood maximisation for sparse bayesian models. In: Bishop, C., Frey, B. (eds.) Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, Key West, Florida, January 3-6 (2003)

    Google Scholar 

  12. Figueiredo, M.: Adaptive sparseness for supervised learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 1150–1159 (2003)

    Article  Google Scholar 

  13. Engel, Y., Mannor, S., Meir, R.: The kernel recursive least squares algorithm. In: ICNC 2003 001, Interdisciplinary Center for Neural Computation, Hebrew University, Jerusalem, Israel (2003)

    Google Scholar 

  14. Engel, Y., Mannor, S., Meir, R.: Sparse online greedy support vector regression. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, p. 84. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Ma, J., Theiler, J., Perkins, S.: Accurate on-line support vector regression. Neural Computation 15, 2683–2704 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

ter Borg, R.W., Rothkrantz, L.J.M. (2005). Smooth Bayesian Kernel Machines. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Formal Models and Their Applications – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550907_91

Download citation

  • DOI: https://doi.org/10.1007/11550907_91

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28755-1

  • Online ISBN: 978-3-540-28756-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics