Abstract
In many data mining applications, the data manifold is of lower dimension than the dimension of the input space. In this paper, it is proposed to take advantage of this additional information in the frame of variational mixtures. The responsibilities computed in the VBE step are constrained according to a discrepancy measure between the Euclidean and the geodesic distance. The methodology is applied to variational Gaussian mixtures as a particular case and outperforms the standard approach, as well as Parzen windows, on both artificial and real data.
An erratum to this chapter can be found at http://dx.doi.org/10.1007/11550907_163 .
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, New York (2000)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Roy. Stat. Soc., B 39, 1–38 (1977)
Attias, H.: A variational bayesian framework for graphical models. In: Solla, S., Leen, T., Müller, K.R. (eds.) NIPS, vol. 12. MIT Press, Cambridge (1999)
Corduneanu, A., Bishop, C.M.: Variational bayesian model selection for mixture distributions. In: Jaakkola, T., Richardson, T. (eds.) AISTATS, vol. 8, pp. 27–34. Morgan Kaufmann, San Francisco (2001)
Vincent, P., Bengio, Y.: Manifold Parzen windows. In: Becker, S., Obermayer, S.T. (eds.) NIPS, vol. 15, pp. 825–832. MIT Press, Cambridge (2003)
Beal, M.J.: Variational Algorithms for Approximate Bayesian Inference. PhD thesis, University College London, UK (2003)
Lee, J.A., Lendasse, A., Verleysen, M.: Nonlinear projection with curvilinear distances: Isomap versus Curvilinear Distance Analysis. Neucom 57, 49–76 (2003)
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)
Bernstein, M., de Silva, V., Langford, J., Tenenbaum, J.: Graph approximations to geodesics on embedded manifolds. Techn. report Stanford University, CA (2000)
West, D.B.: Introduction to Graph Theory. Prentice Hall, Upper Saddle River (1996)
Dijkstra, E.W.: A note on two problems in connection with graphs. Num. Math. 1, 269–271 (1959)
Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33, 1065–1076 (1962)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Archambeau, C., Verleysen, M. (2005). Manifold Constrained Variational Mixtures. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Formal Models and Their Applications – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550907_44
Download citation
DOI: https://doi.org/10.1007/11550907_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28755-1
Online ISBN: 978-3-540-28756-8
eBook Packages: Computer ScienceComputer Science (R0)