Ultrafilter Extensions for Coalgebras | SpringerLink
Skip to main content

Ultrafilter Extensions for Coalgebras

  • Conference paper
Algebra and Coalgebra in Computer Science (CALCO 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3629))

Included in the following conference series:

Abstract

This paper studies finitary modal logics as specification languages for Set-coalgebras (coalgebras on the category of sets) using Stone duality. It is well-known that Set-coalgebras are not semantically adequate for finitary modal logics in the sense that bisimilarity does not in general coincide with logical equivalence. Stone-coalgebras (coalgebras over the category of Stone spaces), on the other hand, do provide an adequate semantics for finitary modal logics. This leads us to study the relationship of finitary modal logics and Set-coalgebras by uncovering the relationship between Set-coalgebras and Stone-coalgebras. This builds on a long tradition in modal logic, where one studies canonical extensions of modal algebras and ultrafilter extensions of Kripke frames to account for finitary logics. Our main contributions are the generalisations of two classical theorems in modal logic to coalgebras, namely the Jónsson-Tarski theorem giving a set-theoretic representation for each modal algebra and the bisimulation-somewhere-else theorem stating that two states of a coalgebra have the same (finitary modal) theory iff they are bisimilar (or behaviourally equivalent) in the ultrafilter extension of the coalgebra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abramsky, S.: A domain equation for bisimulation. Information and Computation 92 (1991)

    Google Scholar 

  2. Abramsky, S., Jung, A.: Domain theory. In: Handbook of Logic in Computer Science. OUP (1994)

    Google Scholar 

  3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. CSLI, Stanford (2001)

    Google Scholar 

  4. Bonsangue, M., Kurz, A.: Duality for logics of transition systems. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Goldblatt, R.: Metamathematics of modal logic I. Reports on Mathematical Logic  6 (1976)

    Google Scholar 

  6. Jacobs, B.: Many-sorted coalgebraic modal logic: a model-theoretic study. Theor. Inform. Appl. 35 (2001)

    Google Scholar 

  7. Johnstone, P.: Stone Spaces. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  8. Jónsson, B., Tarski, A.: Boolean algebras with operators, part 1. Amer. J. Math. 73 (1951)

    Google Scholar 

  9. Kupke, C., Kurz, A., Pattinson, D.: Algebraic semantics for coalgebraic logics. In: CMCS 2004. ENTCS (2004)

    Google Scholar 

  10. Kupke, C., Kurz, A., Venema, Y.: Stone coalgebras. Theoret. Comput. Sci.  327 (2004)

    Google Scholar 

  11. Kurz, A.: A co-variety-theorem for modal logic. In: Advances in Modal Logic 2. CSLI, Stanford, CA (2001); Selected Papers from AiML 2, Uppsala (1998)

    Google Scholar 

  12. Kurz, A.: Specifying coalgebras with modal logic. Theoret. Comput. Sci. 260 (2001); Earlier version appeared in the Proceedings of CMCS 1998. ENTCS, vol. 11 (1998)

    Google Scholar 

  13. Kurz, A., Rosický, J.: Operations and equations for coalgebras. Math. Structures Comput. Sci. 15 (2005)

    Google Scholar 

  14. Moss, L.: Coalgebraic logic. Annals of Pure and Applied Logic 96 (1999)

    Google Scholar 

  15. Pattinson, D.: Coalgebraic modal logic: Soundness, completeness and decidability of local consequence. Theoret. Comput. Sci. 309 (2003)

    Google Scholar 

  16. Pattinson, D.: Expressive logics for coalgebras via terminal sequence induction. Notre Dame Journal of Formal Logic 45 (2004)

    Google Scholar 

  17. Rößiger, M.: From modal logic to terminal coalgebras. Theoret. Comput. Sci. 260 (2001)

    Google Scholar 

  18. Rutten, J.: Universal coalgebra: A theory of systems. Theoret. Comput. Sci. 249 (2000)

    Google Scholar 

  19. Schroeder, L.: Expressivity of Coalgebraic Modal Logic: The Limits and Beyond. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441. Springer, Heidelberg (2005)

    Google Scholar 

  20. Venema, Y.: Algebras and Coalgebras. In: Handbook of Modal Logic. Electronically available (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kupke, C., Kurz, A., Pattinson, D. (2005). Ultrafilter Extensions for Coalgebras. In: Fiadeiro, J.L., Harman, N., Roggenbach, M., Rutten, J. (eds) Algebra and Coalgebra in Computer Science. CALCO 2005. Lecture Notes in Computer Science, vol 3629. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548133_17

Download citation

  • DOI: https://doi.org/10.1007/11548133_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28620-2

  • Online ISBN: 978-3-540-31876-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics