A Novel Quantum Swarm Evolutionary Algorithm for Solving 0-1 Knapsack Problem | SpringerLink
Skip to main content

A Novel Quantum Swarm Evolutionary Algorithm for Solving 0-1 Knapsack Problem

  • Conference paper
Advances in Natural Computation (ICNC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3611))

Included in the following conference series:

  • 1632 Accesses

Abstract

A novel quantum swarm evolutionary algorithm is presented based on quantum-inspired evolutionary algorithm in this article. The proposed algorithm adopts quantum angle to express Q-bit and improved particle swarm optimization to update automatically. The simulated effectiveness is examined in solving 0-1 knapsack problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13156
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benioff, P.: The Computer as a Physical System: a Microscopic Quantum Mechanical Hamiltonian Model of Computers as Represented by Turing Machines. J. Stat. Phys. 22, 563–591 (1980)

    Article  MathSciNet  Google Scholar 

  2. Feynman, R.: Simulating Physics with Computers. Internat. J. Theoret. Phys. 21(6), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  3. Grover, L.K.: Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Piscataway, NJ, pp. 124–134. IEEE Press, Los Alamitos (1994)

    Google Scholar 

  4. Shor, P.W.: Quantum Computing. Documenta Mathematica, Extra Volume. In: Proceedings of the International Congress of Mathematicians, Berlin, Germany, pp. 467–486 (1998)

    Google Scholar 

  5. Han, K.H., Kim, J.H.: Quantum-inspired Evolutionary Algorithm for a Class of Combinatorial Optimization. IEEE Transactions on Evolutionary Computation 6(6), 580–593 (2002)

    Article  Google Scholar 

  6. Han, K.H., Kim, J.H.: Quantum-Inspired Evolutionary Algorithms with a New Termination Criterion, HεGate, and Two-Phase Scheme. IEEE Transactions on Evolutionary Computation 8(2), 156–169 (2004)

    Article  Google Scholar 

  7. Huang, Y.X., Zhou, C.G., Zou, S.X., Wang, Y.: A Fuzzy Neural Network System Based On the Class Cover and Particle Swarm Optimization. Computer Research and Development (in Chinese) 41(7), 1053–1061 (2004)

    Google Scholar 

  8. Wang, Y., Zhou, C.G., Huang, Y.X., Feng, X.Y.: Training Minimal Uncertainty Neural Networks by Bayesian Theorem and Particle Swarm Optimization. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 579–584. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceeding of IEEE International Conference on Neural Networks, Perth, Australia, vol. IV, pp. 1942–1948 (1995)

    Google Scholar 

  10. Heuristic Algorithm Tool Kit: Copyright 2002, Lars Aurdal/Rikshospitalet. Available, http://www.idi.ntnu.no/~lau/Forelesninger/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Y., Feng, XY., Huang, YX., Zhou, WG., Liang, YC., Zhou, CG. (2005). A Novel Quantum Swarm Evolutionary Algorithm for Solving 0-1 Knapsack Problem. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539117_99

Download citation

  • DOI: https://doi.org/10.1007/11539117_99

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28325-6

  • Online ISBN: 978-3-540-31858-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics