Term Graph Model for Text Classification | SpringerLink
Skip to main content

Term Graph Model for Text Classification

  • Conference paper
Advanced Data Mining and Applications (ADMA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3584))

Included in the following conference series:

  • 2466 Accesses

Abstract

Most existing text classification methods (and text mining methods at large) are based on representing the documents using the traditional vector space model. We argue that important information, such as the relationship among words, is lost. We propose a term graph model to represent not only the content of a document but also the relationship among the keywords. We demonstrate that the new model enables us to define new similarity functions, such as considering rank correlation based on PageRank-style algorithms, for the classification purpose. Our preliminary results show promising results of our new model.

This work was partially supported by ARC Discovery Grant – DP0346004.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Antoine, M., Zaiane, O.R.: Classifying text documents by associating terms with text categories. In: Proceedings of the 13th Australasian conference on database technologies, Melbourne, Australia, vol. 5, pp. 215–222 (2002)

    Google Scholar 

  2. Beil, F., Ester, M., Xu, X.: Frequent term-based text clustering. In: Proceedings of the 8th International Conference on Knowledge Discovery and Data Mining (2002)

    Google Scholar 

  3. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems 30, 107–117 (1998)

    Article  Google Scholar 

  4. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machine (2001), At http://www.csie.ntu.edu.tw/~cjlin/libsvm/

  5. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  6. Fung, B.C.M., Wang, K., Ester, M.: Hierarchical document clustering using frequent itemsets. In: Proceedings of the SIAM International Conference on Data Mining (2003)

    Google Scholar 

  7. Jackson, P., Moulinier, I.: Natural Language Processing for Online Applications: Text Retrieval, Extraction and Categorization. John Benjamins Publishing Company, Amsterdam/Philadenphia (2002)

    Google Scholar 

  8. Joachims, T.: Text categorization with support vector machines: Learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  9. Liu, B., Chin, C.W., Ng, H.T.: Mining topic-specific concepts and definitions on the web. In: Proceedings of the 12th International Conference on World Wide Web, pp. 251–260 (2003)

    Google Scholar 

  10. Liu, G., Lu, H., Yu, J.X., Wang, W., XiaoB, X.: AFOPT: An efficient implemetation of pattern growth approach. In: Workshop on Frequent Itemset Mining Implementations, Melbourne, Florida, USA (November 2003)

    Google Scholar 

  11. Paice, C.D.: Another stemmer. SIGIR Forum 24(3), 56–61 (1990), http://www.comp.lancs.ac.uk/computing/research/stemming/

    Article  Google Scholar 

  12. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992) ISBN 0-521-43108-5

    Google Scholar 

  13. Salton, G., McGill, M.J.: An Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)

    Google Scholar 

  14. Sebastiani, F.: Machine learning in automated text categorization. Technical Report Technical Report IEI-B4-31-1999, Consiglio Nazionale delle Ricerche, Pisa, Italy (1999)

    Google Scholar 

  15. Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Survey 34(1), 1–47 (2002)

    Article  Google Scholar 

  16. Wang, K., Xu, C., Liu, B.: Clustering transactions using large items. In: CIKM 1999 (1999)

    Google Scholar 

  17. Yang, Y.: An evaluation of statistical approaches to text categorization. Technical Report Technical Report CMU-CS-97-127, Carnegie Mellon University (April 1997)

    Google Scholar 

  18. Yang, Y., Liu, X.: A re-examination of text categorization methods. In: 22nd Annual International SIGIR 1999, Berkley, August 1999, pp. 42–49 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, W., Do, D.B., Lin, X. (2005). Term Graph Model for Text Classification. In: Li, X., Wang, S., Dong, Z.Y. (eds) Advanced Data Mining and Applications. ADMA 2005. Lecture Notes in Computer Science(), vol 3584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527503_5

Download citation

  • DOI: https://doi.org/10.1007/11527503_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27894-8

  • Online ISBN: 978-3-540-31877-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics