On Dynamic Bit-Probe Complexity | SpringerLink
Skip to main content

On Dynamic Bit-Probe Complexity

  • Conference paper
Automata, Languages and Programming (ICALP 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3580))

Included in the following conference series:

Abstract

This paper presents several advances in the understanding of dynamic data structures in the bit-probe model:

  • We improve the lower bound record for dynamic language membership problems to \(\Omega((\frac{{\rm lg}\ n}{\rm lg \ lg \ {\it n}})^{2})\). Surpassing \(\Omega({\rm lg} \ {\it n})\) was listed as the first open problem in a survey by Miltersen.

  • We prove a bound of \(\Omega(\frac{{\rm lg}\ n}{\rm lg \ lg \ lg \ {\it n}})\) for maintaining partial sums in \({\mathbb Z}/2{\mathbb Z}\). Previously, the known bounds were \(\Omega(\frac{{\rm lg}\ n}{\rm lg \ lg \ {\it n}})\) and \(O({\rm lg}\ n)\).

  • We prove a surprising and tight upper bound of \(O(\frac{{\rm lg} \ {\it n}}{\rm lg \ lg \ {\it n}})\) for predecessor problems. We use this to obtain the same upper bound for dynamic word and prefix problems in group-free monoids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Thorup, M.: Near-optimal fully-dynamic graph connectivity. In: Proc. 32nd ACM Symposium on Theory of Computing (STOC), pp. 343–350 (2000)

    Google Scholar 

  2. Miltersen, P.B., Subramanian, S., Vitter, J.S., Tamassia, R.: Complexity models for incremental computation. Theor. Comp. Sci. 130, 203–236 (1994); Also STACS 1993.

    Article  MATH  MathSciNet  Google Scholar 

  3. Miltersen, P.B.: Cell probe complexity - a survey. In: Advances in Data Structures Workshop, FSTTCS (1999)

    Google Scholar 

  4. Pǎtraşcu, M., Demaine, E.D.: Logarithmic lower bounds in the cell-probe model. In: arXiv:cs.DS/0502041. Based on publications from SODA 2004 and STOC 2004 (2004)

    Google Scholar 

  5. Fredman, M.L.: The complexity of maintaining an array and computing its partial sums. Journal of the ACM 29, 250–260 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fredman, M.L., Saks, M.E.: The cell probe complexity of dynamic data structures. In: Proc. 21st ACM Symposium on Theory of Computing (STOC), pp. 345–354 (1989)

    Google Scholar 

  7. Mortensen, C.W., Pagh, R., Pǎtraşcu, M.: On dynamic range reporting in one dimension. In: Proc. 37th ACM Symposium on Theory of Computing, STOC (2004) (to appear)

    Google Scholar 

  8. Frandsen, G.S., Miltersen, P.B., Skyum, S.: Dynamic word problems. Journal of the ACM 44, 257–271 (1997); See also FOCS 1993.

    Article  MATH  MathSciNet  Google Scholar 

  9. Alstrup, S., Husfeldt, T., Rauhe, T.: Marked ancestor problems. In: Proc. 39th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 534–543 (1998)

    Google Scholar 

  10. Krohn, K., Rhodes, J.: Algebraic theory of machines I. Prime decomposition theorem for finite semigroups and machines. Trans. AMS 116, 450–464 (1965)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pǎtraşcu, C.E., Pǎtraşcu, M. (2005). On Dynamic Bit-Probe Complexity. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds) Automata, Languages and Programming. ICALP 2005. Lecture Notes in Computer Science, vol 3580. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11523468_78

Download citation

  • DOI: https://doi.org/10.1007/11523468_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27580-0

  • Online ISBN: 978-3-540-31691-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics