Volatility Modelling of Multivariate Financial Time Series by Using ICA-GARCH Models | SpringerLink
Skip to main content

Volatility Modelling of Multivariate Financial Time Series by Using ICA-GARCH Models

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2005 (IDEAL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3578))

Abstract

Volatility modelling of asset returns is an important aspect for many financial applications, e.g., option pricing and risk management. GARCH models are usually used to model the volatility processes of financial time series. However, multivariate GARCH modelling of volatilities is still a challenge due to the complexity of parameters estimation. To solve this problem, we suggest using Independent Component Analysis (ICA) for transforming the multivariate time series into statistically independent time series. Then, we propose the ICA-GARCH model which is computationally efficient to estimate the volatilities. The experimental results show that this method is more effective to model multivariate time series than existing methods, e.g., PCA-GARCH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alexander, C.O.: Orthogonal GARCH. In: Alexander, C.O. (ed.) Mastering Risk. Financial Times, vol. 2. Prentice Hall, Englewood Cliffs (2001)

    Google Scholar 

  2. Bollerslev, T.: Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics 31(3), 307–327 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Comon, P.: Independent component analysis: a new concept? Signal Processing 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  4. Engle, R.F.: Autoregressive conditional heteroscedasticity with estimates of the variance of the U. K. inflation. Econometrica 50(4), 987–1008 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hyvarinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)

    Article  Google Scholar 

  6. Hyvarinen, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Computation 9, 1483–1492 (1997)

    Article  Google Scholar 

  7. Wong, A.S.K., Vlaar, P.J.G.: modelling time-varying correlations of financial markets, WO Research Memoranda (discontinued) 739, Netherlands Central Bank, Research Department (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, E.H.C., Yu, P.L.H. (2005). Volatility Modelling of Multivariate Financial Time Series by Using ICA-GARCH Models. In: Gallagher, M., Hogan, J.P., Maire, F. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2005. IDEAL 2005. Lecture Notes in Computer Science, vol 3578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11508069_74

Download citation

  • DOI: https://doi.org/10.1007/11508069_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26972-4

  • Online ISBN: 978-3-540-31693-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics