Abstract
Motion is a key, basic descriptor of our visual experience of the outside world. The lack of motion perception is a devastating illness that leads to death in animals and seriously impaired behavior in humans. Thus, the study of biological basis of motion detection and analysis and the modelling and artificial implementation of those mechanisms has been a fruitful path of science in the last 60 years. Along this paper, the authors make a review of the main models of motion perception that have emerged since the decade of the 60’s stress-ing the underlying biological concepts that have inspired most of them and the traditional architectural concepts imprinted in their functionality and design: formal mathematical analysis, strict geometric patterns of neuron-like processors, selectivity of stimulate etc. Traditional approaches are, then, questioned to include “messy” characteristics of real biological systems such as random distribution of neuron-like processors, non homogeneity of neural architecture, sudden failure of processing units and, in general, non deterministic behavior of the system. As a result is interesting to show that reliability of motion analysis, computational cost and extraction of pure geometrical visual descriptors (size and position of moving objects) besides motion are improved in an implemented model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Nakayama, K.: Biological Image Motion Processing: A review. Vision Research 25(5), 625–660 (1985)
Cull, P.: Biologically Motivated Computing, Computer Motivated Biology. In: Moreno-Díaz, P., Ricciardi Jr., M.-D. (eds.) Wierner’s Cy-bernetics:50 years of evolution, Extended Abstracts (1999)
Borst, A., Egelhaaf, M.: Principles of Visual Motion Detection. TINS 12, 297–306 (1989)
Barlow, H.B., Hill, R.M., Levick, W.R.: Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. Journal Physiology 173, 377–407 (1964)
Treue, S., Maunsell, J.: Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382, 539–541 (1996)
Quesada-Arencibia, A.: Un Sistema Bio-inspirado de análisis y seguimiento visual de movimiento. Implicaciones en Teoría Retinal, Redes Neuronales y Visión Artificial. Tesis Doctoral. Universidad de Las Palmas de Gran Canaria (2001)
Quesada-Arencibia, A., Moreno-Díaz Jr., R., Alemán-Flores, M.: Biologically Based CAST-mechanism for Visual Motion Analysis. In: Moreno-Díaz Jr., R., Buchberger, B., Freire, J.-L. (eds.) EUROCAST 2001. LNCS, vol. 2178, pp. 316–327. Springer, Heidelberg (2001)
Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architec-ture in the cat́s visual cortex. Journal Physiology 160, 106–154 (1962)
Rodríguez-Rodríguez, J.C., Quesada-Arencibia, A., Moreno-Díaz Jr., R., Leibovic, K.N.: On Parallel Channel Modeling of Retinal Processes. In: Moreno-Díaz Jr., R., Pichler, F. (eds.) EUROCAST 2003. LNCS, vol. 2809, pp. 471–481. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Moreno-Díaz, R., Quesada-Arencibia, A., Rodríguez-Rodríguez, J.C. (2005). On the Evolution of Formal Models and Artificial Neural Architectures for Visual Motion Detection. In: Mira, J., Álvarez, J.R. (eds) Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach. IWINAC 2005. Lecture Notes in Computer Science, vol 3562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499305_49
Download citation
DOI: https://doi.org/10.1007/11499305_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26319-7
Online ISBN: 978-3-540-31673-2
eBook Packages: Computer ScienceComputer Science (R0)