Transvenous Path Finding in Cardiac Resynchronization Therapy | SpringerLink
Skip to main content

Transvenous Path Finding in Cardiac Resynchronization Therapy

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3504))

Included in the following conference series:

  • 975 Accesses

Abstract

Cardiovascular diseases are a major health concern all over the world and, especially, heart failure has gained more importance in the recent years. Improving diagnosis and therapy is therefore critical and among the several resources at our disposal, implantable devices is expected to have a better rate of success. This paper is focused on two topics: (i) our views of the main challenges to face in order to reach these objectives and (ii) a specific target regarding the pose of leads for multisite pacemakers by means of virtual endoscopy pre-operative planning and path finding throughout the coronary venous tree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abraham, W.T., Fischer, W.G., Smith, A.L., et al.: Cardiac resynchronization in chronic heart failure. N. Engl. J. Med. 346, 1845–1853 (2002)

    Article  Google Scholar 

  • Alonzo, C., Leclercq, C., d’Allones, F.R., et al.: Six years experience of transvenous left ventricular lead implantation for permanent biventricular pacing in patients with advanced heart failure: technical aspects. Heart 86, 405–410 (2001)

    Article  Google Scholar 

  • Bardou, A., Auger, P., Birkui, P., Chasse, J.L.: Modeling of cardiac electrophysiological mechanisms: from action potential genesis to its propagation in myocardium. Crit. Rev. Biomed. Eng. 24, 141–221 (1996)

    Google Scholar 

  • Bers, D.: Cardiac excitation-contraction coupling. Nature 415, 198–205 (2002)

    Article  Google Scholar 

  • Cazeau, S., Leclercq, C., Lavergne, T., et al.: Effects of multisite biventricular pacing in patients with heart failure and intraventricular delay. N. Engl. J. Med. 344, 873–880 (2001)

    Article  Google Scholar 

  • Coatrieux, J.L.: Toward the living human: the challenge of multimodal and multiscale processing and modeling. In: Multimodal Bio-Medical Systems Workshop, IEEE/NLM/NSF, Bethesda (October 2004)

    Google Scholar 

  • Coatrieux, J.L., Roux, C.: Biomedical Imaging IV. IEEE EMBS Book Series. IEEE Press, NJ (2002)

    Google Scholar 

  • Daubert, J.C., Pitter, P., Le Breton, H., et al.: Permanent left ventricular pacing with transvenous leads inserted into the coronary veins. Pace 21, 239–245 (1998)

    Google Scholar 

  • De Bakker, J.M.T., Hauer, R.N.W., Simmens, T.A.: Activation mapping: unipolar versus bipolar recording. In: Zipes, D.P., Jalife, J. (eds.) Cardiac Electrophysioloy: from cell to bedsite, 3rd edn., Philadelphia, Saunders, pp. 1068–1078 (2000)

    Google Scholar 

  • De Boer, I.H., Sachse, F.B., Mang, S., Dössel, O.: Methods for Determination of Electrode Positions in Tomographic Images. International Journal of Bioelectromagnetism 2(2) (2000)

    Google Scholar 

  • Garreau, M., Simon, A., Boulmier, D., Guillaume, H.: Cardiac Motion Extraction in Multislice Computed Tomography by using a 3D Hierarchical Surface Matching Process. In: IEEE computers in Cardiology, Chicago (2004)

    Google Scholar 

  • Gepstein, L., Hayan, G., Ben-Haim, S.A.: A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart: in vitro and in vivo accuracy results. Circulation 95, 1611–1622 (1997)

    Google Scholar 

  • Haigron, P., Le Berre, G., Coatrieux, J.L.: 3D Navigation in Medicine. Eng.Med.Biol.Mag. 15(2), 70–78 (1996)

    Article  Google Scholar 

  • Haigron, P., Bellemare, M.E., Acosta, O., Goksu, C., Kulik, C., Rioual, K., Lucas, A.: Depth-Map-Based Scene Analysis for Active Navigation in Virtual Angioscopy. IEEE Transactions on Medical Imaging 23(11), 1380–1390 (2004)

    Article  Google Scholar 

  • Hunter, P.J., Nash, M.P., Sands, G.B.: Computational electromechanics of the heart, in Computational Biology of the Heart, pp. 345–407. Wiley & Sons, Chichester (1996)

    Google Scholar 

  • Kass, D.A.: Predicting cardiac resynchronization response by GRS duration. J. Am. Coll. Cardiol. 42, 2125–2127 (2003)

    Article  Google Scholar 

  • Leclercq, C., Kass, D.A.: Re-timing the failing heart: principles and current clinical status of cardiac resynchronization. J. Am. Coll. Cardiol. 39, 194–201 (2002)

    Article  Google Scholar 

  • Noble, D., Winslow, R.L.: Reconstruction of the heart: network models of SA node-atrial interaction, in Computational Biology of the Heart, pp. 49–64. Wiley & Sons, Chichester (1997)

    Google Scholar 

  • Quan, W., Evans, S.J., Hastings, H.M.: Efficient integration of a realistic two-dimensional cardiac tissue model by domain decomposition. IEEE Trans. Biomed. Eng. 45(3), 372–385 (1998)

    Article  Google Scholar 

  • Roux, C., Coatrieux, J.L.: Contemporary perspectives on Three Dimensional Biomedical Imaging. IOS Press, Amsterdam (1997)

    Google Scholar 

  • Rudy, Y.: Insights from theoretical simulations in a fixed pathway. J. Cardiovasc. Electrophysiology 6, 294–312 (1995)

    Article  Google Scholar 

  • Schilling, R.J., Peters, S., Davies, D.W.: Simultaneous endocardial mapping in the left ventricle using a noncontact catheter: comparison of contact and reconstructed electrograms during sinus rhythm. Circulation 98, 887–898 (1998)

    Google Scholar 

  • Schleich, J.M., Dillenseger, J.L., Andru, S., Coatrieux, J.L., Almange, C.: Understanding normal cardiac development using animated models. IEEE Computer Graphics and Applications 22, 14–19 (2002)

    Article  Google Scholar 

  • Sermesant, M., Rhode, K., Anjorin, A., et al.: Simulation of the Electromechanical Activity of the Heart Using XMR Interventional Imaging. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 786–794. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  • Taylor, R., Lavallée, S., Burdea, G., Mosges, R.: Computer-integrated surgery: technology and clinical applications. MIT Press, Cambridge (1996)

    Google Scholar 

  • Virag, N., Blanc, O., Kappenberger, L.: Computer simulation and experimental assessment of cardiac electrophysiology. Futura Publishing, Armonk NY (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coatrieux, J.L., Hernández, A.I., Mabo, P., Garreau, M., Haigron, P. (2005). Transvenous Path Finding in Cardiac Resynchronization Therapy. In: Frangi, A.F., Radeva, P.I., Santos, A., Hernandez, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2005. Lecture Notes in Computer Science, vol 3504. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494621_24

Download citation

  • DOI: https://doi.org/10.1007/11494621_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26161-2

  • Online ISBN: 978-3-540-32081-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics