Abstract
In this paper, we introduce a compact system for fusing location data with data from simple, low-cost, non-location sensors to infer a user’s place and situational context. Specifically, the system senses location with a GSM cell phone and a WiFi-enabled mobile device (each running Place Lab), and collects additional sensor data using a 2” x 1” sensor board that contains a set of common sensors (e.g. accelerometers, barometric pressure sensors) and is attached to the mobile device. Our chief contribution is a multi-sensor system design that provides indoor-outdoor location information, and which models the capabilities and form factor of future cell phones. With two basic examples, we demonstrate that even using fairly primitive sensor processing and fusion algorithms we can leverage the synergy between our location and non-location sensors to unlock new possibilities for mobile context inference. We conclude by discussing directions for future work.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Patterson, D., Liao, L., Fox, D., Kautz, H.: Inferring high-level behavior from low-level sensors. In: Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp 2003. LNCS, vol. 2864, pp. 73–89. Springer, Heidelberg (2003)
Ashbrook, D., Starner, T.: Using GPS to Learn Significant Locations and Predict Movement Across Multiple Users. Personal and Ubiquitous Computing 7(5), 275–286 (2003)
Marmasse, N., Schmandt, C.: A User-Centered Location Model. Personal and Ubiquitous Computing, 318–321 (2002)
Marmasse, N., Schmandt, C., Spectre, D.: WatchMe: Communication and awareness between members of a closely-knit group. In: Davies, N., Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 214–231. Springer, Heidelberg (2004)
Schmidt, A., Aidoo, K.A., Takaluoma, A., Tuomela, U., Van Laerhoven, K., Van de Velde, W.: Advanced interaction in context. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 89–101. Springer, Heidelberg (1999)
Bao, L., Intille, S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)
Patterson, D., Liao, L., Gajos, K., Collier, M., Livic, N., Olson, K., Wang, S., Fox, D., Kautz, H.: Opportunity knocks: A system to provide cognitive assistance with transportation services. In: Davies, N., Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 433–450. Springer, Heidelberg (2004)
Liao, L., Fox, D., Kautz, H.: Learning and Inferring Transportation Routines. In: Proc. of the National Conference on Artificial Intelligence (2004)
Stäger, M., Lukowicz, P., Perera, N., Büren, T., Tröster, G., Starner, T.: SoundButton: Design of a Low Power Wearable Audio Classification System. In: Seventh IEEE International Symposium on Wearable Computers, pp. 12–17 (2003)
Kang, J., Welbourne, W., Stewart, B., Borriello, G.: Extracting places from traces of locations. In: Proceedings of the 2nd ACM international workshop on Wireless mobile applications and services on WLAN hotspots, pp. 110–118 (2004)
Hill, J., et al.: The platforms enabling wireless sensor networks. Communications of the ACM 47(6), 41–46 (2004)
Culler, D., Mulder, H.: Smart Sensors to Network the World. Scientific American, 84–91 (2004)
Winter, D.: Biomechanics and Motor Control of Human Movement, 2nd edn. Wiley, New York (1990)
Goertzel, G.: An Algorithm for the Evaluation of Finite Trigonometric Series. Amer. Math. Month. 65, 34–35 (1958)
Bahl, P., Padmanabhan, V.N.: RADAR: An RF-Based In-Building User Location and Tracking System. In: Proc. IEEE Infocom (March 2000)
LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J., Smith, I., Scott, J., Sohn, T., Howard, J., Hughes, J., Potter, F., Tabert, J., Powledge, P., Borriello, G., Schilit, B.: Place Lab: Device Positioning Using Radio Beacons in the Wild., Intel Research Technical Report: IRS-TR-04-016
Laasonen, K., Raento, M., Toivonen, H.: Adaptive On-Device Location Recognition. In: Proceedings of the 2nd International Conference on Pervasive Computting (April 2004)
LaMarca, A., et al.: Place lab: Device positioning using radio beacons in the wild. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 116–133. Springer, Heidelberg (2005)
Siewiorek, D., et al.: SenSay: A Context-Aware Mobile Phone. In: IEEE International Symposium on Wearable Computers (ISWC 2003), New York (2003)
Brunette, W., et al.: Some Sensor Network Elements for Ubiquitous Computing. In: The Fourth International Conference on Information Processing in Sensor Networks (IPSN 2005), Los Angeles, CA (2005) (to appear)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Welbourne, E., Lester, J., LaMarca, A., Borriello, G. (2005). Mobile Context Inference Using Low-Cost Sensors. In: Strang, T., Linnhoff-Popien, C. (eds) Location- and Context-Awareness. LoCA 2005. Lecture Notes in Computer Science, vol 3479. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11426646_24
Download citation
DOI: https://doi.org/10.1007/11426646_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25896-4
Online ISBN: 978-3-540-32042-5
eBook Packages: Computer ScienceComputer Science (R0)