Mobile Context Inference Using Low-Cost Sensors | SpringerLink
Skip to main content

Mobile Context Inference Using Low-Cost Sensors

  • Conference paper
Location- and Context-Awareness (LoCA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3479))

Included in the following conference series:

Abstract

In this paper, we introduce a compact system for fusing location data with data from simple, low-cost, non-location sensors to infer a user’s place and situational context. Specifically, the system senses location with a GSM cell phone and a WiFi-enabled mobile device (each running Place Lab), and collects additional sensor data using a 2” x 1” sensor board that contains a set of common sensors (e.g. accelerometers, barometric pressure sensors) and is attached to the mobile device. Our chief contribution is a multi-sensor system design that provides indoor-outdoor location information, and which models the capabilities and form factor of future cell phones. With two basic examples, we demonstrate that even using fairly primitive sensor processing and fusion algorithms we can leverage the synergy between our location and non-location sensors to unlock new possibilities for mobile context inference. We conclude by discussing directions for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Patterson, D., Liao, L., Fox, D., Kautz, H.: Inferring high-level behavior from low-level sensors. In: Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp 2003. LNCS, vol. 2864, pp. 73–89. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Ashbrook, D., Starner, T.: Using GPS to Learn Significant Locations and Predict Movement Across Multiple Users. Personal and Ubiquitous Computing 7(5), 275–286 (2003)

    Article  Google Scholar 

  3. Marmasse, N., Schmandt, C.: A User-Centered Location Model. Personal and Ubiquitous Computing, 318–321 (2002)

    Google Scholar 

  4. Marmasse, N., Schmandt, C., Spectre, D.: WatchMe: Communication and awareness between members of a closely-knit group. In: Davies, N., Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 214–231. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Schmidt, A., Aidoo, K.A., Takaluoma, A., Tuomela, U., Van Laerhoven, K., Van de Velde, W.: Advanced interaction in context. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 89–101. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Bao, L., Intille, S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Patterson, D., Liao, L., Gajos, K., Collier, M., Livic, N., Olson, K., Wang, S., Fox, D., Kautz, H.: Opportunity knocks: A system to provide cognitive assistance with transportation services. In: Davies, N., Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 433–450. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Liao, L., Fox, D., Kautz, H.: Learning and Inferring Transportation Routines. In: Proc. of the National Conference on Artificial Intelligence (2004)

    Google Scholar 

  9. Stäger, M., Lukowicz, P., Perera, N., Büren, T., Tröster, G., Starner, T.: SoundButton: Design of a Low Power Wearable Audio Classification System. In: Seventh IEEE International Symposium on Wearable Computers, pp. 12–17 (2003)

    Google Scholar 

  10. Kang, J., Welbourne, W., Stewart, B., Borriello, G.: Extracting places from traces of locations. In: Proceedings of the 2nd ACM international workshop on Wireless mobile applications and services on WLAN hotspots, pp. 110–118 (2004)

    Google Scholar 

  11. Hill, J., et al.: The platforms enabling wireless sensor networks. Communications of the ACM 47(6), 41–46 (2004)

    Article  Google Scholar 

  12. Culler, D., Mulder, H.: Smart Sensors to Network the World. Scientific American, 84–91 (2004)

    Google Scholar 

  13. Winter, D.: Biomechanics and Motor Control of Human Movement, 2nd edn. Wiley, New York (1990)

    Google Scholar 

  14. Goertzel, G.: An Algorithm for the Evaluation of Finite Trigonometric Series. Amer. Math. Month. 65, 34–35 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bahl, P., Padmanabhan, V.N.: RADAR: An RF-Based In-Building User Location and Tracking System. In: Proc. IEEE Infocom (March 2000)

    Google Scholar 

  16. LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J., Smith, I., Scott, J., Sohn, T., Howard, J., Hughes, J., Potter, F., Tabert, J., Powledge, P., Borriello, G., Schilit, B.: Place Lab: Device Positioning Using Radio Beacons in the Wild., Intel Research Technical Report: IRS-TR-04-016

    Google Scholar 

  17. Laasonen, K., Raento, M., Toivonen, H.: Adaptive On-Device Location Recognition. In: Proceedings of the 2nd International Conference on Pervasive Computting (April 2004)

    Google Scholar 

  18. LaMarca, A., et al.: Place lab: Device positioning using radio beacons in the wild. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 116–133. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Siewiorek, D., et al.: SenSay: A Context-Aware Mobile Phone. In: IEEE International Symposium on Wearable Computers (ISWC 2003), New York (2003)

    Google Scholar 

  20. Brunette, W., et al.: Some Sensor Network Elements for Ubiquitous Computing. In: The Fourth International Conference on Information Processing in Sensor Networks (IPSN 2005), Los Angeles, CA (2005) (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Welbourne, E., Lester, J., LaMarca, A., Borriello, G. (2005). Mobile Context Inference Using Low-Cost Sensors. In: Strang, T., Linnhoff-Popien, C. (eds) Location- and Context-Awareness. LoCA 2005. Lecture Notes in Computer Science, vol 3479. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11426646_24

Download citation

  • DOI: https://doi.org/10.1007/11426646_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25896-4

  • Online ISBN: 978-3-540-32042-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics