Abstract
A method for a scale-space analysis of a contour figure based on a crystalline flow is proposed. A crystalline flow is a special family of an evolving polygons, and is a discrete version of a curvature flow. Based on a crystalline flow of a given contour, the proposed method makes a scale-space representation and extracts several sets of dominant facets from the given contour. By changing the shape of the Wulff shape that plays a role of a unit circle for computing the nonlocal curvature of each facet, the method analyses the contour shape anisotropically.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Witkin, A.P.: Scale Space Filtering: A New Approach to Multi-Scale Descriptions. In: Proceedings of 8th International Joint Conference of Artificial Intelligence, pp. 1019–1022 (1983)
Koenderink, J.J.: The Structure of Images. Biological Cybernetics 50, 363–370 (1984)
Alvarez, L., Guichard, F., Lions, P.-L., Morel, J.-M.: Axioms and Fundamental Equations of Image Processing. Arch. Rational Mech. Anal. 123, 199–258 (1993)
Weickert, J.: A Review of Nonlinear Diffusion Filtering. In: Proceedings of 1st International Conference on Scale-Space Theories in Computer Vision, pp. 3–28 (1997)
Angenent, S.B., Gurtin, M.E.: Multiphase thermomechanics with interfacial structure 2. Evolution of an isothermal interface, Arch. Rational Mech. Anal. 108, 323–391 (1989)
Taylor, J.: Constructions and conjectures in crystalline nondifferential geometry. In: Proceedings of the Conference on Differential Geometry, Pitman, London, vol. 52, pp. 321–336 (1991)
Evans, L.C., Spruck, J.: Motion of level-sets by mean curvature I. J. Differential Geometry 33, 635–681 (1991)
Chen, Y.-G., Giga, Y., Goto, S.: Remarks on viscosity solutions for evolution equations. J. Differential Geometry 33, 749–786 (1991)
Hontani, H., Giga, M.-H., Giga, Y., Deguchi, K.: A computation of a crystalline flow starting from non-admissible polygon using expanding selfsimilar solutions. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 465–474. Springer, Heidelberg (2003)
Hontani, H., Giga, M.-H., Giga, Y., Deguchi, K.: Expanding selfsimilar solutions of a crystalline flow with applications to contour figure analysis. Discrete Applied Mathematics (Printing)
Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)
Giga, Y.: A level set method for surface evolution equations. Sugaku 47, 321–340 (1993); Eng. translation, Sugaku Exposition 10, 217–241 (1995)
Giga, Y., Goto, S.: Motion of hypersurfaces and geometric equations. J. Mathematical Society Japan 44, 99–111 (1992)
Gurtin, M.E.: Thermomechanics of Evolving Phase Boundaries in the Plane. Clarendon Press, Oxford (1993)
Giga, M.-H., Giga, Y.: Generalized Motion by Nonlocal Curvature in the Plane. Arch. Rational Mech. Anal. 159, 295–333 (2001)
Giga, M.-H., Giga, Y.: Crystalline and level-set flow – Convergence of a crystalline algorithm for a general anisotropic curvature flow in the plane. Free boundary problems: theory and applications I (ed. N. Kenmochi) Gakuto International Ser. Math. Sci. Appl. 13, 64–79 (2000)
Giga, M.-H., Giga, Y., Hontani, H.: Selfsimilar solutions in motion of curves by crystalline energy. In: Minisymposium lecture of 5th International Congress on Industrial and Applied Mathematics, Sydney (July 2003)
Rattarangsi, A., Chin, R.T.: Scale-Based Detection of Corners of Planar Curves. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(4), 430–449 (1992)
Hontani, H., Deguchi, K.: An Adaptive Local Smoothing for Contour Figure Approximation. In: Nielsen, M., Johansen, P., Fogh Olsen, O., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 483–488. Springer, Heidelberg (1999)
Giga, M.-H., Giga, Y.: Consistency in evolutions by crystalline curvature. In: Niezgodka, M., Strzelecki, P. (eds.) Proc. of the Zakopane Congress Free Boundary Problems 1995, Theory and Applications, Poland, pp. 186–202 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hontani, H., Suzuki, Y., Giga, Y., Giga, MH., Deguchi, K. (2005). A Scale-Space Analysis of a Contour Figure Using a Crystalline Flow. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds) Scale Space and PDE Methods in Computer Vision. Scale-Space 2005. Lecture Notes in Computer Science, vol 3459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408031_14
Download citation
DOI: https://doi.org/10.1007/11408031_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25547-5
Online ISBN: 978-3-540-32012-8
eBook Packages: Computer ScienceComputer Science (R0)