Abstract
The aim of this paper is to show how a Boolean Concept Logic may be elaborated as a mathematical theory based on Formal Concept Analysis [GW96]. For this purpose, concept lattices are extended by further operations, mainly negation and opposition. Two extensions are discussed which lead, on the one hand, to algebras of protoconcepts equationally equivalent to double Boolean algebras and, on the other hand, to concept algebras quasi-equationally equivalent to dicomplemented lattices. In both cases, basic representation theorems are proved. These results are not only basic for Contextual Concept Logic but also for Contextual Judgment Logic with its theory of concept graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beierwaltes, W., Menne, A.: Gegensatz. In: Ritter†, J., Gründer, K. (eds.) Historisches Wörterbuch der Philosophie, Bd. 3, pp. 105–119. Schwabe & Co, Basel (1974)
Boole, G.: An investigation of the laws of thought, on which are founded the mathematical theories of logic and probabilities. Macmillan, Basingstoke (1854); Reprinted by Dover Publ., New York (1958)
Davey, B.A., Priestley, H.: Introduction to lattices and order. Cambridge University Press, Cambridge (1990)
Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999); German version: Springer, Heidelberg (1996)
Ganter, B., Wille, R.: Contextual attribute logic. In: Tepfenhart, W., Cyre, W. (eds.) ICCS 1999. LNCS (LNAI), vol. 1640, pp. 377–388. Springer, Heidelberg (1999)
Herrman, C., Luksch, P., Skorsky, M., Wille, R.: Algebras of semiconcepts and double Boolean algebras. Contributions to General Algebra 13 (to appear)
Kamlah, W., Lorenzen, P.: Logische Propädeutik. Vorschule des vernünftigen Redens. B.I.-HTB 227, Mannheim (1967)
Kant, I.: Logic. Dover, New York (1988)
Luksch, P., Wille, R.: A mathematical model for conceptual knowledge systems. In: Bock, H.-H., Ihm, P. (eds.) Classification, data analysis, and knowledge organization, pp. 156–162. Springer, Heidelberg (1991)
Menne, A.: Negation. In: Ritter†, J., Gründer, K., (eds.): Historisches Wörterbuch der Philosophie, 6th Bd., pp. 666–670. Schwabe & Co, Basel (1984)
Mineau, G., Stumme, G., Wille, R.: Conceptual structures represented by conceptual graphs and formal concept analysis. In: Tepfenhart, W., Cyre, W. (eds.) ICCS 1999. LNCS, vol. 1640, pp. 423–441. Springer, Heidelberg (1999)
Prediger, S.: Kontextuelle Urteilslogik mit Begriffsgraphen. Ein Beitrag zur Restrukturierung der mathematischen Logik. Dissertation, TU Darmstadt. Shaker Verlag, Aachen (1998)
Prediger, S., Wille, R.: The lattice of concept graphs of a relationally scaled context. In: Tepfenhart, W.M. (ed.) ICCS 1999. LNCS, vol. 1640, pp. 401–414. Springer, Heidelberg (1999)
Wille, R.: Concept lattices and conceptual knowledge systems. Computers & Mathematics with Applications 23, 493–515 (1992)
Wille, R.: Restructuring mathematical logic: an approach based on Peirce’s pragmatism. In: Ursini, A., Agliano, P. (eds.) Logic and Algebra, pp. 267–281. Marcel Dekker, New York (1996)
Wille, R.: Conceptual Graphs and Formal Concept Analysis. In: Lukose, D., Delugach, H., Keeler, M., Searle, L., Sowa, J.F. (eds.) ICCS 1997. LNCS (LNAI), vol. 1257, pp. 290–303. Springer, Heidelberg (1997)
Wille, R.: Conceptual landscapes of knowledge: a pragmatic paradigm for knowledge processing. In: Gaul, W., Locarek-Junge, H. (eds.) Classification in the Information Age, pp. 344–356. Springer, Heidelberg (1999); already printed In: G. Mineau, A. Fall (eds.): Proc. 2nd Intl. KRUSE. Simon Fraser University, Vancouver, pp. 2–13 (1997)
Wille, R.: Triadic Concept Graphs. In: Mugnier, M.-L., Chein, M. (eds.) ICCS 1998. LNCS (LNAI), vol. 1453, pp. 194–208. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wille, R. (2000). Boolean Concept Logic. In: Ganter, B., Mineau, G.W. (eds) Conceptual Structures: Logical, Linguistic, and Computational Issues. ICCS 2000. Lecture Notes in Computer Science(), vol 1867. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10722280_22
Download citation
DOI: https://doi.org/10.1007/10722280_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67859-5
Online ISBN: 978-3-540-44663-7
eBook Packages: Springer Book Archive