Boolean Concept Logic | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1867))

Included in the following conference series:

Abstract

The aim of this paper is to show how a Boolean Concept Logic may be elaborated as a mathematical theory based on Formal Concept Analysis  [GW96]. For this purpose, concept lattices are extended by further operations, mainly negation and opposition. Two extensions are discussed which lead, on the one hand, to algebras of protoconcepts equationally equivalent to double Boolean algebras and, on the other hand, to concept algebras quasi-equationally equivalent to dicomplemented lattices. In both cases, basic representation theorems are proved. These results are not only basic for Contextual Concept Logic but also for Contextual Judgment Logic with its theory of concept graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beierwaltes, W., Menne, A.: Gegensatz. In: Ritter†, J., Gründer, K. (eds.) Historisches Wörterbuch der Philosophie, Bd. 3, pp. 105–119. Schwabe & Co, Basel (1974)

    Google Scholar 

  2. Boole, G.: An investigation of the laws of thought, on which are founded the mathematical theories of logic and probabilities. Macmillan, Basingstoke (1854); Reprinted by Dover Publ., New York (1958)

    Google Scholar 

  3. Davey, B.A., Priestley, H.: Introduction to lattices and order. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  4. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999); German version: Springer, Heidelberg (1996)

    Google Scholar 

  5. Ganter, B., Wille, R.: Contextual attribute logic. In: Tepfenhart, W., Cyre, W. (eds.) ICCS 1999. LNCS (LNAI), vol. 1640, pp. 377–388. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Herrman, C., Luksch, P., Skorsky, M., Wille, R.: Algebras of semiconcepts and double Boolean algebras. Contributions to General Algebra 13 (to appear)

    Google Scholar 

  7. Kamlah, W., Lorenzen, P.: Logische Propädeutik. Vorschule des vernünftigen Redens. B.I.-HTB 227, Mannheim (1967)

    Google Scholar 

  8. Kant, I.: Logic. Dover, New York (1988)

    Google Scholar 

  9. Luksch, P., Wille, R.: A mathematical model for conceptual knowledge systems. In: Bock, H.-H., Ihm, P. (eds.) Classification, data analysis, and knowledge organization, pp. 156–162. Springer, Heidelberg (1991)

    Google Scholar 

  10. Menne, A.: Negation. In: Ritter†, J., Gründer, K., (eds.): Historisches Wörterbuch der Philosophie, 6th Bd., pp. 666–670. Schwabe & Co, Basel (1984)

    Google Scholar 

  11. Mineau, G., Stumme, G., Wille, R.: Conceptual structures represented by conceptual graphs and formal concept analysis. In: Tepfenhart, W., Cyre, W. (eds.) ICCS 1999. LNCS, vol. 1640, pp. 423–441. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Prediger, S.: Kontextuelle Urteilslogik mit Begriffsgraphen. Ein Beitrag zur Restrukturierung der mathematischen Logik. Dissertation, TU Darmstadt. Shaker Verlag, Aachen (1998)

    Google Scholar 

  13. Prediger, S., Wille, R.: The lattice of concept graphs of a relationally scaled context. In: Tepfenhart, W.M. (ed.) ICCS 1999. LNCS, vol. 1640, pp. 401–414. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Wille, R.: Concept lattices and conceptual knowledge systems. Computers & Mathematics with Applications 23, 493–515 (1992)

    Article  MATH  Google Scholar 

  15. Wille, R.: Restructuring mathematical logic: an approach based on Peirce’s pragmatism. In: Ursini, A., Agliano, P. (eds.) Logic and Algebra, pp. 267–281. Marcel Dekker, New York (1996)

    Google Scholar 

  16. Wille, R.: Conceptual Graphs and Formal Concept Analysis. In: Lukose, D., Delugach, H., Keeler, M., Searle, L., Sowa, J.F. (eds.) ICCS 1997. LNCS (LNAI), vol. 1257, pp. 290–303. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  17. Wille, R.: Conceptual landscapes of knowledge: a pragmatic paradigm for knowledge processing. In: Gaul, W., Locarek-Junge, H. (eds.) Classification in the Information Age, pp. 344–356. Springer, Heidelberg (1999); already printed In: G. Mineau, A. Fall (eds.): Proc. 2nd Intl. KRUSE. Simon Fraser University, Vancouver, pp. 2–13 (1997)

    Google Scholar 

  18. Wille, R.: Triadic Concept Graphs. In: Mugnier, M.-L., Chein, M. (eds.) ICCS 1998. LNCS (LNAI), vol. 1453, pp. 194–208. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wille, R. (2000). Boolean Concept Logic. In: Ganter, B., Mineau, G.W. (eds) Conceptual Structures: Logical, Linguistic, and Computational Issues. ICCS 2000. Lecture Notes in Computer Science(), vol 1867. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10722280_22

Download citation

  • DOI: https://doi.org/10.1007/10722280_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67859-5

  • Online ISBN: 978-3-540-44663-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics