Experiments on Information Retrieval Using Case-Based Reasoning | SpringerLink
Skip to main content

Experiments on Information Retrieval Using Case-Based Reasoning

  • Conference paper
MICAI 2000: Advances in Artificial Intelligence (MICAI 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1793))

Included in the following conference series:

  • 754 Accesses

Abstract

This paper presents a demonstration of a Theory for Episodic Learning applied to Information Retrieval. The theory is compatible with Case-Based Reasoning and is used to model how contextual information about users, their aims and search-sessions experience may be represented in case bases, and automatically tuned up. The proposed model shows how query processing may be extended by deriving information from the case bases, taking advantage of user profiles and a history of queries derived from search-sessions. The paper includes a demonstration of the program IRBOC, presenting a fully worked example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aha, D.: Case-Based Learning Algorithms. In: Bareiss, R. (ed.) Proceedings: Case-Based Reasoning Workshop -DARPA, Washington, D.C., pp. 147–158. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  • Aha, D., Kibler, D., Albert, M.K.: Instance-Based Learning Algorithms. Machine Learning 6, 37–66 (1991)

    Google Scholar 

  • Belkin, N.J.: Anomalous States of Knowledge as a Basis fir Information Retrieval. The Canadian Journal for Information Science 5, 133–143 (1980)

    Google Scholar 

  • Belkin, N.J., Cool, C.: The Concept of Information Seeking Strategies and its Use in the Design of Information Retrieval Systems. Case-Based Reasoning and Information Retrieval: Exploring the opportunities for technology sharing. Papers from the, Spring Symposium, Technical Report SS-93-07. AAAI Press, Menlo Park, 1-7 (1993a)

    Google Scholar 

  • Belkin, N.J., Cool, C., Stein, A., Thiel, U.: Scripts for Information Seeking Strategies. Case-Based Reasoning and Information Retrieval: Exploring the opportunities for technology sharing. Papers from the 1993 Spring Symposium, Technical Report SS-93-07. AAAI Press, Menlo Park, 8-17 (1993b)

    Google Scholar 

  • Belkin, N.J., Marchetti, P.G., Cool, C.: BRAQUE: Design of an interface to support user interaction in information retrieval. Information Processing and Management 29(4), 325–344 (1993c)

    Article  Google Scholar 

  • Cain, T., Pazzani, M.J., Silverstein, G.: Using Domain Knowledge to Influence Similarity Judgements. In: Bareiss, R. (ed.) Proceedings: Case-Based Reasoning Workshop / DARPA, Washington, D.C., pp. 191–199. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  • Croft, W.B.: Approaches to Intelligent Information Retrieval. Information Processing and Management 23(4), 249–254 (1987)

    Article  Google Scholar 

  • Croft, W.B., Thompson, R.H.: I3R: A new approach to the design of document retrieval systems. Journal of the American Society for Information Science 38(6), 389–404 (1987)

    Article  Google Scholar 

  • De Mey, M.: The relevance of the cognitive paradigm for information science. In: Harbo, O., Kajberg, L. (eds.) Theory and Application of Information Research, Proceedings of the Second International Research Forum on Information Science, Mansell, London (1980)

    Google Scholar 

  • Frakes, W.B., Baeza-Yates, R. (eds.): Information Retrieval: Data Structures and Algorithms. Prentice Hall, Englewood Cliffs (1992)

    Google Scholar 

  • Forsyth, R., Rada, R.: Machine Learning: applications in expert systems and information retrieval. Ellis Horwood, Chichester (1986)

    Google Scholar 

  • Ingwersen, P., Pejtersen, A.M.: User requirements—empirical research and information systems design. In: Inwersen, P. (ed.) Information Technology and Information Use, pp. 111–125. Taylor Graham, London (1986)

    Google Scholar 

  • Maturana, H.R.: Biology of Language: The Epistemology of Reality. In: Miller, G., Lenneberg, E. (eds.) Psychology and Biology of Language and Thought: Essays in honour of Eric Lenneberg, pp. 27–63. Academic Press, London (1978)

    Google Scholar 

  • Medin, D.L., Smith, E.E.: Concepts and concept formation. Annual Review of Psychology 35, 113–138 (1984)

    Article  Google Scholar 

  • Pazzani, M., Silverstein, G.: Learning from examples: The effect of different conceptual roles. In: Proceedings of the Twelfth Annual Conference of the Cognitive Science Society, pp. 221–228. Earlbaum, Cambridge (1990)

    Google Scholar 

  • Ramirez, C.: A Theory of Episodic Memory for Case-Based Reasoning and its Implementation, Ph.D. Thesis, University of Kent at Canterbury, Kent, UK (1998)

    Google Scholar 

  • Ramirez, C., Cooley, R.: A Theory of the Acquisition of Episodic Memory. In: Aha, D., Wettschereck, D. (eds.) 9th European Conference on Machine Learning: Workshop Notes on Case-Based Learning: Beyond Classification of Feature Vectors, Prague, Czech Republic, pp. 48–55 (1997)

    Google Scholar 

  • Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw Hill, New York (1983)

    MATH  Google Scholar 

  • Sparck Jones, K.: Retrieving information or answering questions? (London, British Library The Eighth British Library Annual Research Lecture 1989) (1990)

    Google Scholar 

  • Tversky, A.: Features of similarity. Psychological Review 84, 327–352 (1977)

    Article  Google Scholar 

  • Watters, C.R.: Logic Framework for Information Retrieval. Journal of the American Society for Information Science 40(5), 311–324 (1989)

    Article  Google Scholar 

  • Wettschereck, D., Aha, D.W.: Weighting Features. In: Aamodt, A., Veloso, M.M. (eds.) ICCBR 1995. LNCS, vol. 1010, pp. 347–358. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  • Willet, P.: Recent Trends in Hierarchic Document Clustering: A Critical Review. Information Processing and Management 24(5), 577–597 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ramirez, C. (2000). Experiments on Information Retrieval Using Case-Based Reasoning. In: Cairó, O., Sucar, L.E., Cantu, F.J. (eds) MICAI 2000: Advances in Artificial Intelligence. MICAI 2000. Lecture Notes in Computer Science(), vol 1793. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10720076_3

Download citation

  • DOI: https://doi.org/10.1007/10720076_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67354-5

  • Online ISBN: 978-3-540-45562-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics