Quintic Reciprocity and Primality Test for Numbers of the Form $M~=~A5^{n} \pm ~\omega_{n}$ | SpringerLink
Skip to main content

Quintic Reciprocity and Primality Test for Numbers of the Form \(M~=~A5^{n} \pm ~\omega_{n}\)

  • Conference paper
  • First Online:
LATIN 2000: Theoretical Informatics (LATIN 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1776))

Included in the following conference series:

  • 1119 Accesses

Abstract

The Quintic Reciprocity Law is used to produce an algorithm, that runs in polynomial time, and that determines the primality of numbers M such that M 4 − 1 is divisible by a power of 5 which is larger that \(\sqrt{M}\), provided that a small prime p, p ≡ 1 (mod 5) is given, such that M is not a fifth power modulo p. The same test equations are used for all such M.

If M is a fifth power modulo p, a sufficient condition that determines the primality of M is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adleman, L., Pomerance, C., Rumely, R.: On distinguishing prime numbers from composite numbers. Ann. of Math. 117, 173–206 (1983)

    Article  MathSciNet  Google Scholar 

  2. Bressoud, D.: Factorization and Primality Testing. Springer, New York (1989)

    Book  Google Scholar 

  3. Berrizbeitia, P., Berry, T.G.: Cubic Reciprocity and generalised Lucas-Lehmer test for primality of A3n±1. In: Proc. AMS, vol. 127, pp. 1923–1925 (1999)

    Google Scholar 

  4. Cohen, H., Lenstra, H.W.: Primality testing and Jacobi sums. Math. Comp. 42, 297–330 (1984)

    Article  MathSciNet  Google Scholar 

  5. Cohen, H., Lenstra, A.K.: Implemetation of a new primality test. Math. Comp. 48, 103–121 (1987)

    Article  MathSciNet  Google Scholar 

  6. Guthmann, A.: Effective Primality Test for Integers of the Forms \({\rm N} = {\rm K}3^{{\rm n}}+1 \ {\rm and} \ {\rm N}={\rm K}2^{{\rm m}}3^{{\rm n}}+1\). BIT 32, 529–534 (1992)

    Article  MathSciNet  Google Scholar 

  7. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory, 2nd edn. Springer, New York (1982)

    Book  Google Scholar 

  8. Rosen, M.: A Proof of the Lucas-Lehmer Test. Amer. Math. Monthly 95(9), 855–856 (1980)

    Article  MathSciNet  Google Scholar 

  9. Williams, H.C.: Effective Primality Tests for some Integers of the Forms \({\rm A}5^{{\rm n}}-1 \ {\rm and} \ {\rm A}7^{{\rm n}}-1\). Math. of Comp. 48, 385–403 (1987)

    MathSciNet  MATH  Google Scholar 

  10. Williams, H.C.: A Generalization of Lehmer’s functions. Acta Arith 29, 315–341 (1976)

    Article  MathSciNet  Google Scholar 

  11. Williams, H.C., Judd, J.S.: Determination of the Primality of N by Using Factors of N 2±1. Math. of Comp. 30, 157–172 (1976)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berrizbeitia, P., Odreman Vera, M., Tena Ayuso, J. (2000). Quintic Reciprocity and Primality Test for Numbers of the Form \(M~=~A5^{n} \pm ~\omega_{n}\) . In: Gonnet, G.H., Viola, A. (eds) LATIN 2000: Theoretical Informatics. LATIN 2000. Lecture Notes in Computer Science, vol 1776. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10719839_28

Download citation

  • DOI: https://doi.org/10.1007/10719839_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67306-4

  • Online ISBN: 978-3-540-46415-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics