EVOLUTIONARY APPROACH TO FINDING ITERATED FUNCTION SYSTEMS FOR A TWO DIMENSIONAL IMAGE | SpringerLink
Skip to main content

EVOLUTIONARY APPROACH TO FINDING ITERATED FUNCTION SYSTEMS FOR A TWO DIMENSIONAL IMAGE

  • Chapter
Computer Vision and Graphics

Part of the book series: Computational Imaging and Vision ((CIVI,volume 32))

  • 856 Accesses

Abstract

This paper presents an approach based on evolutionary computations to the IFS inverse problem. A method using variable number of mappings is proposed. Some experimental results are also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 28600
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

REFERENCES

  1. Barnsley, M. F., Fractals Everywhere, Academic Press, 1988.

    Google Scholar 

  2. Falconer, K., Fractal Geometry: Mathematical Foundations and Applications, Wiley, 1990.

    Google Scholar 

  3. Giles, P. A., Iterated Function Systems and Shape Representation. PhD thesis, University of Durham, UK, 1990.

    Google Scholar 

  4. Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Reading, MA, Addison-Wesley, 1989.

    Google Scholar 

  5. Holland, J. H., Adaptation in Natural and Artificial Systems, Ann Arbor, 1975.

    Google Scholar 

  6. D. E. Hoskins and J. Vagners, Image compression using iterated function systems and evolutionary programming: image compression without image metrics. In Proceedings of the 26th Asilomar Conference on Signals, Systems and Computers, 1992.

    Google Scholar 

  7. Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin, 1996.

    Google Scholar 

  8. Michalewicz, Z. Fogel, D. B., How to Solve It: Modern Heuristics. Springer, 2000.

    Google Scholar 

  9. Schaefer, R., Podstawy Genetycznej Optymalizacji Globalnej (Foundations of Global Genetic Optimization), UJ, Krakow, 2002 (in Polish).

    Google Scholar 

  10. Schaefer, R., Kolodziej, J., Genetic search reinforced by the population hierarchy in Foundations of Genetics Algorithms 7, De Jong, K. A., Poli, R., Rowe, J. E. - eds., pp 383–399, Morgan Kaufmann, 2003.

    Google Scholar 

  11. Vences, L. and Rudomin, I., Fractal compression of single images and image sequences using genetic algorithms. Manuscript, Institute of Technology, University of Monterrey, 1994. Available from ftp://ftp.informatik.uni-freiburg.de/papers/fractal/VeRu94.ps.gz.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Bielecki, A., Strug, B. (2006). EVOLUTIONARY APPROACH TO FINDING ITERATED FUNCTION SYSTEMS FOR A TWO DIMENSIONAL IMAGE. In: Wojciechowski, K., Smolka, B., Palus, H., Kozera, R., Skarbek, W., Noakes, L. (eds) Computer Vision and Graphics. Computational Imaging and Vision, vol 32. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4179-9_73

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4179-9_73

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4178-5

  • Online ISBN: 978-1-4020-4179-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics