Estimation of Lower Extremity Joint Moments and 3D Ground Reaction Forces Using IMU Sensors in Multiple Walking Conditions: A Deep Learning Approach - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jun;27(6):2829-2840.
doi: 10.1109/JBHI.2023.3262164. Epub 2023 Jun 5.

Estimation of Lower Extremity Joint Moments and 3D Ground Reaction Forces Using IMU Sensors in Multiple Walking Conditions: A Deep Learning Approach

Estimation of Lower Extremity Joint Moments and 3D Ground Reaction Forces Using IMU Sensors in Multiple Walking Conditions: A Deep Learning Approach

Md Sanzid Bin Hossain et al. IEEE J Biomed Health Inform. 2023 Jun.

Abstract

Human kinetics, specifically joint moments and ground reaction forces (GRFs) can provide important clinical information and can be used to control assistive devices. Traditionally, collection of kinetics is mostly limited to the lab environment because it relies on data that are measured from a motion capture system and floor-embedded force plates to calculate the dynamics via musculoskeletal models. This spatially limited method makes it extremely challenging to measure kinetics outside the laboratory in a variety of walking conditions due to the expensive device setup and large space required. Recently, employing machine learning with IMU sensors are suggested as an alternative method for biomechanical analyses. Although these methods enable estimating human kinetic data outside the laboratory by linking IMU sensor data with kinetics dataset, they are limited to show inaccurate kinetic estimates even in highly repeatable single walking conditions due to the employment of generic deep learning algorithms. Thus, this paper proposes a novel deep learning model, Kinetics-FM-DLR-Ensemble-Net for single limb prediction of hip, knee, and ankle joint moments and 3-dimensional GRFs using three IMU sensors on the thigh, shank, and foot under several representatives walking conditions in daily living, such as treadmill, level-ground, stair, and ramp. This is the first study that implements both joint moments and GRFs in multiple walking conditions using IMU sensors via deep learning. Our deep learning model is versatile and accurate for identifying human kinetics across diverse subjects and walking conditions and outperforms state-of-the-art deep learning model for kinetics estimation by a large margin.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources