Deep learning versus ophthalmologists for screening for glaucoma on fundus examination: A systematic review and meta-analysis
- PMID: 34506041
- DOI: 10.1111/ceo.14000
Deep learning versus ophthalmologists for screening for glaucoma on fundus examination: A systematic review and meta-analysis
Abstract
Background: In this systematic review and meta-analysis, we aimed to compare deep learning versus ophthalmologists in glaucoma diagnosis on fundus examinations.
Method: PubMed, Cochrane, Embase, ClinicalTrials.gov and ScienceDirect databases were searched for studies reporting a comparison between the glaucoma diagnosis performance of deep learning and ophthalmologists on fundus examinations on the same datasets, until 10 December 2020. Studies had to report an area under the receiver operating characteristics (AUC) with SD or enough data to generate one.
Results: We included six studies in our meta-analysis. There was no difference in AUC between ophthalmologists (AUC = 82.0, 95% confidence intervals [CI] 65.4-98.6) and deep learning (97.0, 89.4-104.5). There was also no difference using several pessimistic and optimistic variants of our meta-analysis: the best (82.2, 60.0-104.3) or worst (77.7, 53.1-102.3) ophthalmologists versus the best (97.1, 89.5-104.7) or worst (97.1, 88.5-105.6) deep learning of each study. We did not retrieve any factors influencing those results.
Conclusion: Deep learning had similar performance compared to ophthalmologists in glaucoma diagnosis from fundus examinations. Further studies should evaluate deep learning in clinical situations.
Keywords: artificial intelligence; deep learning; glaucoma; machine learning; screening.
© 2021 Royal Australian and New Zealand College of Ophthalmologists.
Similar articles
-
A Deep Learning-Based Algorithm Identifies Glaucomatous Discs Using Monoscopic Fundus Photographs.Ophthalmol Glaucoma. 2018 Jul-Aug;1(1):15-22. doi: 10.1016/j.ogla.2018.04.002. Epub 2018 Jun 5. Ophthalmol Glaucoma. 2018. PMID: 32672627
-
Application of Comprehensive Artificial intelligence Retinal Expert (CARE) system: a national real-world evidence study.Lancet Digit Health. 2021 Aug;3(8):e486-e495. doi: 10.1016/S2589-7500(21)00086-8. Lancet Digit Health. 2021. PMID: 34325853
-
Accurate prediction of glaucoma from colour fundus images with a convolutional neural network that relies on active and transfer learning.Acta Ophthalmol. 2020 Feb;98(1):e94-e100. doi: 10.1111/aos.14193. Epub 2019 Jul 25. Acta Ophthalmol. 2020. PMID: 31344328
-
Performances of Machine Learning in Detecting Glaucoma Using Fundus and Retinal Optical Coherence Tomography Images: A Meta-Analysis.Am J Ophthalmol. 2022 May;237:1-12. doi: 10.1016/j.ajo.2021.12.008. Epub 2021 Dec 21. Am J Ophthalmol. 2022. PMID: 34942113 Review.
-
Diagnosis of Glaucoma on Retinal Fundus Images Using Deep Learning: Detection of Nerve Fiber Layer Defect and Optic Disc Analysis.Adv Exp Med Biol. 2020;1213:121-132. doi: 10.1007/978-3-030-33128-3_8. Adv Exp Med Biol. 2020. PMID: 32030667 Review.
Cited by
-
Implementing and evaluating a fully functional AI-enabled model for chronic eye disease screening in a real clinical environment.BMC Ophthalmol. 2024 Feb 1;24(1):51. doi: 10.1186/s12886-024-03306-y. BMC Ophthalmol. 2024. PMID: 38302908 Free PMC article.
-
Artificial Intelligence and Advanced Technology in Glaucoma: A Review.J Pers Med. 2024 Oct 16;14(10):1062. doi: 10.3390/jpm14101062. J Pers Med. 2024. PMID: 39452568 Free PMC article. Review.
-
A generalised computer vision model for improved glaucoma screening using fundus images.Eye (Lond). 2024 Nov 5. doi: 10.1038/s41433-024-03388-4. Online ahead of print. Eye (Lond). 2024. PMID: 39501004
-
Updates in Diagnostic Imaging for Infectious Keratitis: A Review.Diagnostics (Basel). 2023 Oct 31;13(21):3358. doi: 10.3390/diagnostics13213358. Diagnostics (Basel). 2023. PMID: 37958254 Free PMC article. Review.
References
REFERENCES
-
- Tham Y-C, Li X, Wong TY, Quigley HA, Aung T, Cheng C-Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081-2090.
-
- Hood DC, Raza AS, De Moraes CGV, Liebmann JM, Ritch R. Glaucomatous damage of the macula. Progress Retinal Eye Res. 2013;32:1-21.
-
- Giangiacomo A, Coleman A. The epidemiology of glaucoma. 2009. p. 13-21.
-
- Michelson G, Wärntges S, Hornegger J, Lausen B. The papilla as screening parameter for early diagnosis of glaucoma. Dtsch Arztebl Int août. 2008;105(34-35):583-589.
-
- Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311(18):1901-1911.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical