Deep learning-based differentiation of invasive adenocarcinomas from preinvasive or minimally invasive lesions among pulmonary subsolid nodules - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug;31(8):6239-6247.
doi: 10.1007/s00330-020-07620-z. Epub 2021 Feb 8.

Deep learning-based differentiation of invasive adenocarcinomas from preinvasive or minimally invasive lesions among pulmonary subsolid nodules

Affiliations

Deep learning-based differentiation of invasive adenocarcinomas from preinvasive or minimally invasive lesions among pulmonary subsolid nodules

Sohee Park et al. Eur Radiol. 2021 Aug.

Abstract

Objectives: To evaluate a deep learning-based model using model-generated segmentation masks to differentiate invasive pulmonary adenocarcinoma (IPA) from preinvasive lesions or minimally invasive adenocarcinoma (MIA) on CT, making comparisons with radiologist-derived measurements of solid portion size.

Methods: Four hundred eleven subsolid nodules (SSNs) (120 preinvasive lesions or MIAs and 291 IPAs) in 333 patients who underwent surgery between June 2010 and August 2016 were retrospectively included to develop the model (370 SSNs in 293 patients for training and 41 SSNs in 40 patients for tuning). Ninety SSNs of 2 cm or smaller (45 preinvasive lesions or MIAs and 45 IPAs) resected in 2018 formed a validation set. Six radiologists measured the solid portion of each nodule. Performances of the model and radiologists were assessed using receiver operating characteristics curve analysis.

Results: The deep learning model differentiated IPA from preinvasive lesions or MIA with areas under the curve (AUCs) of 0.914, 0.956, and 0.833 for the training, tuning, and validation sets, respectively. The mean AUC of the radiologists was 0.835 in the validation set, without significant differences between radiologists and the model (p = 0.97). The sensitivity, specificity, and accuracy of the model were 71% (32/45), 87% (39/45), and 79% (71/90), respectively, whereas the corresponding values of the radiologists were 75.2% (203/270), 76.7% (207/270), and 75.9% (410/540) with a 5-mm threshold for the solid portion size.

Conclusions: The performance of the model for differentiating IPA from preinvasive lesions or MIA was comparable to that of the radiologists' measurements of solid portion size.

Key points: • A deep learning-based model differentiated IPA from preinvasive lesions or MIA with AUCs of 0.914 and 0.956 for the training and tuning sets, respectively. • In the validation set including subsolid nodules of 2 cm or smaller, the model showed an AUC of 0.833, being on par with the performance of the solid portion size measurements made by the radiologists (AUC, 0.835; p = 0.97). • SSNs with a solid portion measuring > 10 mm on CT showed a high probability of being IPA (positive predictive value, 93.5-100.0%).

Keywords: Adenocarcinoma of lung; Deep learning; Neoplasm; Tomography, X-ray computed.

PubMed Disclaimer

Similar articles

Cited by

References

    1. MacMahon H, Naidich DP, Goo JM et al (2017) Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society 2017. Radiology 284:228–243 - DOI
    1. Cho J, Ko SJ, Kim SJ et al (2014) Surgical resection of nodular ground-glass opacities without percutaneous needle aspiration or biopsy. BMC Cancer 14:838 - DOI
    1. Lee SM, Park CM, Song YS et al (2017) CT assessment-based direct surgical resection of part-solid nodules with solid component larger than 5 mm without preoperative biopsy: experience at a single tertiary hospital. Eur Radiol 27:5119–5126 - DOI
    1. Hansell DM, Bankier AA, MacMahon H, McLoud TC, Muller NL, Remy J (2008) Fleischner society: glossary of terms for thoracic imaging. Radiology 246:697–722 - DOI
    1. Henschke CI, Yankelevitz DF, Mirtcheva R et al (2002) CT screening for lung cancer: frequency and significance of part-solid and nonsolid nodules. AJR Am J Roentgenol 178:1053–1057 - DOI

LinkOut - more resources