Deep learning interpretation of echocardiograms
- PMID: 31993508
- PMCID: PMC6981156
- DOI: 10.1038/s41746-019-0216-8
Deep learning interpretation of echocardiograms
Abstract
Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most common imaging modality in cardiovascular medicine. Using convolutional neural networks on a large new dataset, we show that deep learning applied to echocardiography can identify local cardiac structures, estimate cardiac function, and predict systemic phenotypes that modify cardiovascular risk but not readily identifiable to human interpretation. Our deep learning model, EchoNet, accurately identified the presence of pacemaker leads (AUC = 0.89), enlarged left atrium (AUC = 0.86), left ventricular hypertrophy (AUC = 0.75), left ventricular end systolic and diastolic volumes ( = 0.74 and = 0.70), and ejection fraction ( = 0.50), as well as predicted systemic phenotypes of age ( = 0.46), sex (AUC = 0.88), weight ( = 0.56), and height ( = 0.33). Interpretation analysis validates that EchoNet shows appropriate attention to key cardiac structures when performing human-explainable tasks and highlights hypothesis-generating regions of interest when predicting systemic phenotypes difficult for human interpretation. Machine learning on echocardiography images can streamline repetitive tasks in the clinical workflow, provide preliminary interpretation in areas with insufficient qualified cardiologists, and predict phenotypes challenging for human evaluation.
Keywords: Cardiovascular diseases; Image processing; Machine learning.
© The Author(s) 2020.
Conflict of interest statement
Competing InterestsThe authors declare no competing interests.
Figures





Similar articles
-
Automated interpretation of systolic and diastolic function on the echocardiogram: a multicohort study.Lancet Digit Health. 2022 Jan;4(1):e46-e54. doi: 10.1016/S2589-7500(21)00235-1. Epub 2021 Dec 1. Lancet Digit Health. 2022. PMID: 34863649
-
Fully Automated Echocardiogram Interpretation in Clinical Practice.Circulation. 2018 Oct 16;138(16):1623-1635. doi: 10.1161/CIRCULATIONAHA.118.034338. Circulation. 2018. PMID: 30354459 Free PMC article.
-
Deep learning evaluation of biomarkers from echocardiogram videos.EBioMedicine. 2021 Nov;73:103613. doi: 10.1016/j.ebiom.2021.103613. Epub 2021 Oct 14. EBioMedicine. 2021. PMID: 34656880 Free PMC article.
-
European Association of Cardiovascular Imaging/Cardiovascular Imaging Department of the Brazilian Society of Cardiology recommendations for the use of cardiac imaging to assess and follow patients after heart transplantation.Eur Heart J Cardiovasc Imaging. 2015 Sep;16(9):919-48. doi: 10.1093/ehjci/jev139. Epub 2015 Jul 2. Eur Heart J Cardiovasc Imaging. 2015. PMID: 26139361 Review.
-
Machine Learning Augmented Echocardiography for Diastolic Function Assessment.Front Cardiovasc Med. 2021 Aug 4;8:711611. doi: 10.3389/fcvm.2021.711611. eCollection 2021. Front Cardiovasc Med. 2021. PMID: 34422935 Free PMC article. Review.
Cited by
-
Development of automated neural network prediction for echocardiographic left ventricular ejection fraction.Front Med (Lausanne). 2024 Apr 3;11:1354070. doi: 10.3389/fmed.2024.1354070. eCollection 2024. Front Med (Lausanne). 2024. PMID: 38686369 Free PMC article.
-
Vision-language foundation model for echocardiogram interpretation.Nat Med. 2024 May;30(5):1481-1488. doi: 10.1038/s41591-024-02959-y. Epub 2024 Apr 30. Nat Med. 2024. PMID: 38689062 Free PMC article.
-
Artificial intelligence in the neonatal intensive care unit: the time is now.J Perinatol. 2024 Jan;44(1):131-135. doi: 10.1038/s41372-023-01719-z. Epub 2023 Jul 13. J Perinatol. 2024. PMID: 37443271 Review.
-
Impact of Case and Control Selection on Training Artificial Intelligence Screening of Cardiac Amyloidosis.JACC Adv. 2024 Jun 12;3(9):100998. doi: 10.1016/j.jacadv.2024.100998. eCollection 2024 Sep. JACC Adv. 2024. PMID: 39372462 Free PMC article.
-
Leveraging Machine Learning and Artificial Intelligence to Improve Peripheral Artery Disease Detection, Treatment, and Outcomes.Circ Res. 2021 Jun 11;128(12):1833-1850. doi: 10.1161/CIRCRESAHA.121.318224. Epub 2021 Jun 10. Circ Res. 2021. PMID: 34110911 Free PMC article. Review.
References
-
- Madani A, Ong JR, Tiberwal A, Mofrad MR. US hospital use of echocardiography: Insights from the nationwide inpatient sample. J. Am. Coll. Cardiol. 2016;67:502–511. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources