Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Nov 15;9(1):16884.
doi: 10.1038/s41598-019-52737-x.

Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks

Affiliations

Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks

Veit Sandfort et al. Sci Rep. .

Abstract

Labeled medical imaging data is scarce and expensive to generate. To achieve generalizable deep learning models large amounts of data are needed. Standard data augmentation is a method to increase generalizability and is routinely performed. Generative adversarial networks offer a novel method for data augmentation. We evaluate the use of CycleGAN for data augmentation in CT segmentation tasks. Using a large image database we trained a CycleGAN to transform contrast CT images into non-contrast images. We then used the trained CycleGAN to augment our training using these synthetic non-contrast images. We compared the segmentation performance of a U-Net trained on the original dataset compared to a U-Net trained on the combined dataset of original data and synthetic non-contrast images. We further evaluated the U-Net segmentation performance on two separate datasets: The original contrast CT dataset on which segmentations were created and a second dataset from a different hospital containing only non-contrast CTs. We refer to these 2 separate datasets as the in-distribution and out-of-distribution datasets, respectively. We show that in several CT segmentation tasks performance is improved significantly, especially in out-of-distribution (noncontrast CT) data. For example, when training the model with standard augmentation techniques, performance of segmentation of the kidneys on out-of-distribution non-contrast images was dramatically lower than for in-distribution data (Dice score of 0.09 vs. 0.94 for out-of-distribution vs. in-distribution data, respectively, p < 0.001). When the kidney model was trained with CycleGAN augmentation techniques, the out-of-distribution (non-contrast) performance increased dramatically (from a Dice score of 0.09 to 0.66, p < 0.001). Improvements for the liver and spleen were smaller, from 0.86 to 0.89 and 0.65 to 0.69, respectively. We believe this method will be valuable to medical imaging researchers to reduce manual segmentation effort and cost in CT imaging.

PubMed Disclaimer

Conflict of interest statement

Author RMS reports receiving royalties from iCAD, Philips, PingAn and ScanMed, and his lab receives research support from PingAn (Cooperative Research and Development Agreement) and NVIDIA (GPU card donation). Author PJP reports being an advisor to Bracco and a shareholder in SHINE, Elucent, and Cellectar. Author VS reports no competing interests. Author KY reports no competing interests.

Figures

Figure 1
Figure 1
Examples of true IV contrast CT scans (left column) and synthetic non-contrast CT scans generated by a CycleGAN. The rightmost column shows unrelated example non-contrast images. Overall the synthetic non-contrast images appear convincing - even when significant abnormalities are present in the contrast CT scans.
Figure 2
Figure 2
Dice scores of different organs for the tested augmentation methods in the two test sets (in-distribution (contrast CT) vs. out-of-distribution (non-contrast).
Figure 3
Figure 3
Examples of segmentations. Original CT and expert segmentation are shown in the first and second columns and CycleGAN and standard augmented training results are shown in the third and fourth columns, respectively. For detailed comments see main text.
Figure 4
Figure 4
Overview of the experimental setup.
Figure 5
Figure 5
Basic architecture of the U-Net used. We inserted a strided convolution (green) as the first layer (stride 2) with a large kernel (7 × 7 × 7). This modification is complemented by a transposed convolution in the last layer (yellow). This reduces greatly the need for feature map memory and significantly increases the maximum input size. Curved arrows denote residual connections. Note that there is no skip connection at the highest level.

Similar articles

Cited by

References

    1. Sahiner B, et al. Deep learning in medical imaging and radiation therapy. Med. Phys. 2018;46:e1–e36. doi: 10.1002/mp.13264. - DOI - PMC - PubMed
    1. Moreno-Torres JG, Raeder T, Alaiz-RodríGuez R, Chawla NV, Herrera F. A unifying view on dataset shift in classification. Pattern Recogn. 2012;45:521–530. doi: 10.1016/j.patcog.2011.06.019. - DOI
    1. Goodfellow, I. et al. Generative adversarial nets. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D. & Weinberger, K. Q. (eds) Advances in Neural Information Processing Systems 27, 2672–2680 (Curran Associates, Inc., 2014).
    1. Antoniou, A., Storkey, A. & Edwards, H. Data augmentation generative adversarial networks, arXiv:1711.04340 (2017).
    1. Shrivastava, A. et al. Learning from simulated and unsupervised images through adversarial training. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2242–2251, 10.1109/CVPR.2017.241 (2017).

Publication types

MeSH terms