Influence of IMU position and orientation placement errors on ground reaction force estimation - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec 3:97:109416.
doi: 10.1016/j.jbiomech.2019.109416. Epub 2019 Oct 10.

Influence of IMU position and orientation placement errors on ground reaction force estimation

Affiliations

Influence of IMU position and orientation placement errors on ground reaction force estimation

Tian Tan et al. J Biomech. .

Abstract

Wearable inertial measurement units (IMU) have been proposed to estimate GRF outside of specialized laboratories, however the precise influence of sensor placement error on accuracy is unknown. We investigated the influence of IMU position and orientation placement errors on GRF estimation accuracy.

Methods: Kinematic data from twelve healthy subjects based on marker trajectories were used to simulate 1848 combinations of sensor position placement errors (range ± 100 mm) and orientation placement errors (range ± 25°) across eight body segments (trunk, pelvis, left/right thighs, left/right shanks, and left/right feet) during normal walking trials for baseline cases when a single sensor was misplaced and for the extreme cases when all sensors were simultaneously misplaced. Three machine learning algorithms were used to estimate GRF for each placement error condition and compared with the no placement error condition to evaluate performance.

Results: Position placement errors for a single misplaced IMU reduced vertical GRF (VGRF), medio-lateral GRF (MLGRF), and anterior-posterior GRF (APGRF) estimation accuracy by up to 1.1%, 2.0%, and 0.9%, respectively and for all eight simultaneously misplaced IMUs by up to 4.9%, 6.0%, and 4.3%, respectively. Orientation placement errors for a single misplaced IMU reduced VGRF, MLGRF, and APGRF estimation accuracy by up to 4.8%, 7.3%, and 1.5%, respectively and for all eight simultaneously misplaced IMUs by up to 20.8%, 23.4%, and 12.3%, respectively.

Conclusion: IMU sensor misplacement, particularly orientation placement errors, can significantly reduce GRF estimation accuracy and thus measures should be taken to account for placement errors in implementations of GRF estimation via wearable IMUs.

Keywords: Ground reaction force; Orientation error; Position error.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources