Spatiotemporal ontogeny of brain wiring
- PMID: 31206020
- PMCID: PMC6561744
- DOI: 10.1126/sciadv.aav9694
Spatiotemporal ontogeny of brain wiring
Abstract
The wiring of vertebrate and invertebrate brains provides the anatomical skeleton for cognition and behavior. Connections among brain regions are characterized by heterogeneous strength that is parsimoniously described by the wiring cost and homophily principles. Moreover, brains exhibit a characteristic global network topology, including modules and hubs. However, the mechanisms resulting in the observed interregional wiring principles and network topology of brains are unknown. Here, with the aid of computational modeling, we demonstrate that a mechanism based on heterochronous and spatially ordered neurodevelopmental gradients, without the involvement of activity-dependent plasticity or axonal guidance cues, can reconstruct a large part of the wiring principles (on average, 83%) and global network topology (on average, 80%) of diverse adult brain connectomes, including fly and human connectomes. In sum, space and time are key components of a parsimonious, plausible neurodevelopmental mechanism of brain wiring with a potential universal scope, encompassing vertebrate and invertebrate brains.
Figures






Similar articles
-
Constraints and spandrels of interareal connectomes.Nat Commun. 2016 Dec 7;7:13812. doi: 10.1038/ncomms13812. Nat Commun. 2016. PMID: 27924867 Free PMC article.
-
Features of spatial and functional segregation and integration of the primate connectome revealed by trade-off between wiring cost and efficiency.PLoS Comput Biol. 2017 Sep 29;13(9):e1005776. doi: 10.1371/journal.pcbi.1005776. eCollection 2017 Sep. PLoS Comput Biol. 2017. PMID: 28961235 Free PMC article.
-
Specificity and robustness of long-distance connections in weighted, interareal connectomes.Proc Natl Acad Sci U S A. 2018 May 22;115(21):E4880-E4889. doi: 10.1073/pnas.1720186115. Epub 2018 May 8. Proc Natl Acad Sci U S A. 2018. PMID: 29739890 Free PMC article.
-
Comparative Connectomics.Trends Cogn Sci. 2016 May;20(5):345-361. doi: 10.1016/j.tics.2016.03.001. Epub 2016 Mar 26. Trends Cogn Sci. 2016. PMID: 27026480 Review.
-
The human connectome from an evolutionary perspective.Prog Brain Res. 2019;250:129-151. doi: 10.1016/bs.pbr.2019.05.004. Epub 2019 Jul 9. Prog Brain Res. 2019. PMID: 31703899 Review.
Cited by
-
Resolving inter-regional communication capacity in the human connectome.Netw Neurosci. 2023 Oct 1;7(3):1051-1079. doi: 10.1162/netn_a_00318. eCollection 2023. Netw Neurosci. 2023. PMID: 37781139 Free PMC article.
-
Brain network dynamics codify heterogeneity in seizure evolution.Brain Commun. 2022 Sep 16;4(5):fcac234. doi: 10.1093/braincomms/fcac234. eCollection 2022. Brain Commun. 2022. PMID: 36196085 Free PMC article.
-
Standardizing workflows in imaging transcriptomics with the abagen toolbox.Elife. 2021 Nov 16;10:e72129. doi: 10.7554/eLife.72129. Elife. 2021. PMID: 34783653 Free PMC article.
-
Neuroimaging brain growth charts: A road to mental health.Psychoradiology. 2021 Dec 30;1(4):272-286. doi: 10.1093/psyrad/kkab022. eCollection 2021 Dec. Psychoradiology. 2021. PMID: 35028568 Free PMC article.
-
Genetic influences on hub connectivity of the human connectome.Nat Commun. 2021 Jul 9;12(1):4237. doi: 10.1038/s41467-021-24306-2. Nat Commun. 2021. PMID: 34244483 Free PMC article.
References
-
- Geschwind N., Disconnexion syndromes in animals and man. I. Brain 88, 237–294 (1965). - PubMed
-
- Oh S. W., Harris J. A., Ng L., Winslow B., Cain N., Mihalas S., Wang Q., Lau C., Kuan L., Henry A. M., Mortrud M. T., Ouellette B., Nguyen T. N., Sorensen S. A., Slaughterbeck C. R., Wakeman W., Li Y., Feng D., Ho A., Nicholas E., Hirokawa K. E., Bohn P., Joines K. M., Peng H., Hawrylycz M. J., Phillips J. W., Hohmann J. G., Wohnoutka P., Gerfen C. R., Koch C., Bernard A., Dang C., Jones A. R., Zeng H., A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014). - PMC - PubMed
-
- Markov N. T., Ercsey-Ravasz M. M., Ribeiro Gomes A. R., Lamy C., Magrou L., Vezoli J., Misery P., Falchier A., Quilodran R., Gariel M. A., Sallet J., Gamanut R., Huissoud C., Clavagnier S., Giroud P., Sappey-Marinier D., Barone P., Dehay C., Toroczkai Z., Knoblauch K., van Essen D. C., Kennedy H., A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17–36 (2014). - PMC - PubMed
-
- Chiang A.-S., Lin C.-Y., Chuang C.-C., Chang H.-M., Hsieh C.-H., Yeh C.-W., Shih C.-T., Wu J.-J., Wang G.-T., Chen Y.-C., Wu C.-C., Chen G.-Y., Ching Y.-T., Lee P.-C., Lin C.-Y., Lin H.-H., Wu C.-C., Hsu H.-W., Huang Y.-A., Chen J.-Y., Chiang H.-J., Lu C.-F., Ni R.-F., Yeh C.-Y., Hwang J.-K., Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr. Biol. 21, 1–11 (2011). - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Molecular Biology Databases