Whole tumor section quantitative image analysis maximizes between-pathologists' reproducibility for clinical immunohistochemistry-based biomarkers - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Dec;97(12):1508-1515.
doi: 10.1038/labinvest.2017.82. Epub 2017 Aug 14.

Whole tumor section quantitative image analysis maximizes between-pathologists' reproducibility for clinical immunohistochemistry-based biomarkers

Affiliations
Free article

Whole tumor section quantitative image analysis maximizes between-pathologists' reproducibility for clinical immunohistochemistry-based biomarkers

Michael Barnes et al. Lab Invest. 2017 Dec.
Free article

Abstract

Pathologists have had increasing responsibility for quantitating immunohistochemistry (IHC) biomarkers with the expectation of high between-reader reproducibility due to clinical decision-making especially for patient therapy. Digital imaging-based quantitation of IHC clinical slides offers a potential aid for improvement; however, its clinical adoption is limited potentially due to a conventional field-of-view annotation approach. In this study, we implemented a novel solely morphology-based whole tumor section annotation strategy to maximize image analysis quantitation results between readers. We first compare the field-of-view image analysis annotation approach to digital and manual-based modalities across multiple clinical studies (~120 cases per study) and biomarkers (ER, PR, HER2, Ki-67, and p53 IHC) and then compare a subset of the same cases (~40 cases each from the ER, PR, HER2, and Ki-67 studies) using whole tumor section annotation approach to understand incremental value of all modalities. Between-reader results for each biomarker in relation to conventional scoring modalities showed similar concordance as manual read: ER field-of-view image analysis: 95.3% (95% CI 92.0-98.2%) vs digital read: 92.0% (87.8-95.8%) vs manual read: 94.9% (91.4-97.8%); PR field-of-view image analysis: 94.1% (90.3-97.2%) vs digital read: 94.0% (90.2-97.1%) vs manual read: 94.4% (90.9-97.2%); Ki-67 field-of-view image analysis: 86.8% (82.1-91.4%) vs digital read: 76.6% (70.9-82.2%) vs manual read: 85.6% (80.4-90.4%); p53 field-of-view image analysis: 81.7% (76.4-86.8%) vs digital read: 80.6% (75.0-86.0%) vs manual read: 78.8% (72.2-83.3%); and HER2 field-of-view image analysis: 93.8% (90.0-97.2%) vs digital read: 91.0 (86.6-94.9%) vs manual read: 87.2% (82.1-91.9%). Subset implementation and analysis on the same cases using whole tumor section image analysis approach showed significant improvement between pathologists over field-of-view image analysis and manual read (HER2 100% (97-100%), P=0.013 field-of-view image analysis and 0.013 manual read; Ki-67 100% (96.9-100%), P=0.040 and 0.012; ER 98.3% (94.1-99.5%), p=0.232 and 0.181; and PR 96.6% (91.5-98.7%), p=0.012 and 0.257). Overall, whole tumor section image analysis significantly improves between-pathologist's reproducibility and is the optimal approach for clinical-based image analysis algorithms.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nat Commun. 2016 Aug 16;7:12474 - PubMed
    1. Arch Pathol Lab Med. 2014 Jul;138(7):876-84 - PubMed
    1. Arch Pathol Lab Med. 2014 Feb;138(2):241-56 - PubMed
    1. Endocrine. 2000 Aug;13(1):1-10 - PubMed
    1. Breast Cancer Res. 2008;10(5):R89 - PubMed

MeSH terms