Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification
- PMID: 28369169
- DOI: 10.1093/bioinformatics/btx180
Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification
Abstract
Summary: State-of-the-art light and electron microscopes are capable of acquiring large image datasets, but quantitatively evaluating the data often involves manually annotating structures of interest. This process is time-consuming and often a major bottleneck in the evaluation pipeline. To overcome this problem, we have introduced the Trainable Weka Segmentation (TWS), a machine learning tool that leverages a limited number of manual annotations in order to train a classifier and segment the remaining data automatically. In addition, TWS can provide unsupervised segmentation learning schemes (clustering) and can be customized to employ user-designed image features or classifiers.
Availability and implementation: TWS is distributed as open-source software as part of the Fiji image processing distribution of ImageJ at http://imagej.net/Trainable_Weka_Segmentation .
Contact: ignacio.arganda@ehu.eus.
Supplementary information: Supplementary data are available at Bioinformatics online.
© The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Similar articles
-
Classifying changes in LN-18 glial cell morphology: a supervised machine learning approach to analyzing cell microscopy data via FIJI and WEKA.Med Biol Eng Comput. 2020 Jul;58(7):1419-1430. doi: 10.1007/s11517-020-02177-x. Epub 2020 Apr 21. Med Biol Eng Comput. 2020. PMID: 32314170
-
Weka Trainable Segmentation Plugin in ImageJ: A Semi-Automatic Tool Applied to Crystal Size Distributions of Microlites in Volcanic Rocks.Microsc Microanal. 2018 Dec;24(6):667-675. doi: 10.1017/S1431927618015428. Microsc Microanal. 2018. PMID: 30588911
-
A Cell Segmentation/Tracking Tool Based on Machine Learning.Methods Mol Biol. 2019;2040:399-422. doi: 10.1007/978-1-4939-9686-5_19. Methods Mol Biol. 2019. PMID: 31432490
-
Contemporary Advances in Computer-Assisted Bone Histomorphometry and Identification of Bone Cells in Culture.Calcif Tissue Int. 2023 Jan;112(1):1-12. doi: 10.1007/s00223-022-01035-2. Epub 2022 Oct 29. Calcif Tissue Int. 2023. PMID: 36309622 Review.
-
Machine learning applications in cell image analysis.Immunol Cell Biol. 2017 Jul;95(6):525-530. doi: 10.1038/icb.2017.16. Epub 2017 Mar 15. Immunol Cell Biol. 2017. PMID: 28294138 Review.
Cited by
-
Submicrometre spatiotemporal characterization of the Toxoplasma adhesion strategy for gliding motility.Nat Microbiol. 2024 Dec;9(12):3148-3164. doi: 10.1038/s41564-024-01818-3. Epub 2024 Nov 4. Nat Microbiol. 2024. PMID: 39496912
-
Coordinating transcription and replication to mitigate their conflicts in early Drosophila embryos.Cell Rep. 2022 Oct 18;41(3):111507. doi: 10.1016/j.celrep.2022.111507. Cell Rep. 2022. PMID: 36261005 Free PMC article.
-
Correlative single-molecule and structured illumination microscopy of fast dynamics at the plasma membrane.Nat Commun. 2024 Jul 10;15(1):5813. doi: 10.1038/s41467-024-49876-9. Nat Commun. 2024. PMID: 38987559 Free PMC article.
-
Mitochondrial fission and mitophagy are independent mechanisms regulating ischemia/reperfusion injury in primary neurons.Cell Death Dis. 2021 May 12;12(5):475. doi: 10.1038/s41419-021-03752-2. Cell Death Dis. 2021. PMID: 33980811 Free PMC article.
-
Anoplophora graafi longhorn beetle coloration is due to disordered diamond-like packed spheres.Soft Matter. 2024 Mar 13;20(11):2509-2517. doi: 10.1039/d4sm00068d. Soft Matter. 2024. PMID: 38389437 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources