Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Mar 26:5:4.
doi: 10.1186/s13336-015-0019-3. eCollection 2015.

Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine

Affiliations

Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine

Christian Castaneda et al. J Clin Bioinforma. .

Abstract

As research laboratories and clinics collaborate to achieve precision medicine, both communities are required to understand mandated electronic health/medical record (EHR/EMR) initiatives that will be fully implemented in all clinics in the United States by 2015. Stakeholders will need to evaluate current record keeping practices and optimize and standardize methodologies to capture nearly all information in digital format. Collaborative efforts from academic and industry sectors are crucial to achieving higher efficacy in patient care while minimizing costs. Currently existing digitized data and information are present in multiple formats and are largely unstructured. In the absence of a universally accepted management system, departments and institutions continue to generate silos of information. As a result, invaluable and newly discovered knowledge is difficult to access. To accelerate biomedical research and reduce healthcare costs, clinical and bioinformatics systems must employ common data elements to create structured annotation forms enabling laboratories and clinics to capture sharable data in real time. Conversion of these datasets to knowable information should be a routine institutionalized process. New scientific knowledge and clinical discoveries can be shared via integrated knowledge environments defined by flexible data models and extensive use of standards, ontologies, vocabularies, and thesauri. In the clinical setting, aggregated knowledge must be displayed in user-friendly formats so that physicians, non-technical laboratory personnel, nurses, data/research coordinators, and end-users can enter data, access information, and understand the output. The effort to connect astronomical numbers of data points, including '-omics'-based molecular data, individual genome sequences, experimental data, patient clinical phenotypes, and follow-up data is a monumental task. Roadblocks to this vision of integration and interoperability include ethical, legal, and logistical concerns. Ensuring data security and protection of patient rights while simultaneously facilitating standardization is paramount to maintaining public support. The capabilities of supercomputing need to be applied strategically. A standardized, methodological implementation must be applied to developed artificial intelligence systems with the ability to integrate data and information into clinically relevant knowledge. Ultimately, the integration of bioinformatics and clinical data in a clinical decision support system promises precision medicine and cost effective and personalized patient care.

Keywords: Artificial intelligence; Bioinformatics; Clinical decision support system; Clinical informatics; Clinical outcome; Integrated knowledge environment; Patient care; Personalized medicine; Precision medicine; Watson.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Typical office-visit workflow, highlighting points at which CDSS may improve care. Electronic health records act as a reservoir of information used by clinicians and clinical decision support systems to plan healthcare. Along with this, information research data feeds back into the workflow allowing a self-improving cycle of information exchange. CDSS then affects many stages of the office visit and optimizes patient care through warnings, reminders, and suggestions.

Similar articles

Cited by

References

    1. “Clinical Informatics”. Home. N.p., n.d. Web. 29 Dec. 2013. <http://www.amia.org/applications-informatics/clinical-informatics>.
    1. “New Clinical Informatics Subspecialty and First Class of Diplomates Signal Pivot in Healthcare Delivery”. Home. N.p., n.d. Web. 29 Dec. 2013. <http://www.amia.org/news-and-publications/press-release/new-clinical-inf...>.
    1. “Translational Bioinformatics”. Home. N.p., n.d. Web. 29 Dec. 2013. <http://www.amia.org/applications-informatics/translational-bioinformatics>.
    1. Häyrinen K, Saranto K, Nykänen P. Definition, structure, content, use and impacts of electronic health records: a review of the research literature. Int J Med Inform. 2008;77(5):291–304. doi: 10.1016/j.ijmedinf.2007.09.001. - DOI - PubMed
    1. Katayama T, Arakawa K, Nakao M, Ono K, Aoki-Kinoshita KF, Yamamoto Y, et al. The DBCLS BioHackathon: standardization and interoperability for bioinformatics web services and workflows. The DBCLS BioHackathon Consortium*. J Biomed Semant. 2010;1(1):8. doi: 10.1186/2041-1480-1-8. - DOI - PMC - PubMed