Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface
- PMID: 25104385
- DOI: 10.1126/science.1254642
Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface
Abstract
Inspired by the brain's structure, we have developed an efficient, scalable, and flexible non-von Neumann architecture that leverages contemporary silicon technology. To demonstrate, we built a 5.4-billion-transistor chip with 4096 neurosynaptic cores interconnected via an intrachip network that integrates 1 million programmable spiking neurons and 256 million configurable synapses. Chips can be tiled in two dimensions via an interchip communication interface, seamlessly scaling the architecture to a cortexlike sheet of arbitrary size. The architecture is well suited to many applications that use complex neural networks in real time, for example, multiobject detection and classification. With 400-pixel-by-240-pixel video input at 30 frames per second, the chip consumes 63 milliwatts.
Copyright © 2014, American Association for the Advancement of Science.
Comment in
-
The brain chip.Science. 2014 Aug 8;345(6197):614-6. doi: 10.1126/science.345.6197.614. Epub 2014 Aug 7. Science. 2014. PMID: 25104367 No abstract available.
Similar articles
-
A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors.Neural Netw. 2009 Jul-Aug;22(5-6):791-800. doi: 10.1016/j.neunet.2009.06.028. Epub 2009 Jul 2. Neural Netw. 2009. PMID: 19615853
-
Spiking neuron computation with the time machine.IEEE Trans Biomed Circuits Syst. 2012 Apr;6(2):142-55. doi: 10.1109/TBCAS.2011.2179544. IEEE Trans Biomed Circuits Syst. 2012. PMID: 23852979
-
A learning-enabled neuron array IC based upon transistor channel models of biological phenomena.IEEE Trans Biomed Circuits Syst. 2013 Feb;7(1):71-81. doi: 10.1109/TBCAS.2012.2197858. IEEE Trans Biomed Circuits Syst. 2013. PMID: 23853281
-
Post-silicon nano-electronic device and its application in brain-inspired chips.Front Neurorobot. 2022 Jul 27;16:948386. doi: 10.3389/fnbot.2022.948386. eCollection 2022. Front Neurorobot. 2022. PMID: 35966373 Free PMC article. Review.
-
Learning in brains and machines.Spat Vis. 2000;13(2-3):287-96. doi: 10.1163/156856800741108. Spat Vis. 2000. PMID: 11198239 Review.
Cited by
-
Emulating synaptic response in n- and p-channel MoS2 transistors by utilizing charge trapping dynamics.Sci Rep. 2020 Jul 22;10(1):12178. doi: 10.1038/s41598-020-68793-7. Sci Rep. 2020. PMID: 32699332 Free PMC article.
-
Adaptive Extreme Edge Computing for Wearable Devices.Front Neurosci. 2021 May 11;15:611300. doi: 10.3389/fnins.2021.611300. eCollection 2021. Front Neurosci. 2021. PMID: 34045939 Free PMC article. Review.
-
An On-chip Spiking Neural Network for Estimation of the Head Pose of the iCub Robot.Front Neurosci. 2020 Jun 23;14:551. doi: 10.3389/fnins.2020.00551. eCollection 2020. Front Neurosci. 2020. PMID: 32655350 Free PMC article.
-
Periodicity Pitch Perception.Front Neurosci. 2020 Jun 4;14:486. doi: 10.3389/fnins.2020.00486. eCollection 2020. Front Neurosci. 2020. PMID: 32581672 Free PMC article.
-
Hardware Design for Autonomous Bayesian Networks.Front Comput Neurosci. 2021 Mar 8;15:584797. doi: 10.3389/fncom.2021.584797. eCollection 2021. Front Comput Neurosci. 2021. PMID: 33762919 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources