Breast image analysis for risk assessment, detection, diagnosis, and treatment of cancer
- PMID: 23683087
- DOI: 10.1146/annurev-bioeng-071812-152416
Breast image analysis for risk assessment, detection, diagnosis, and treatment of cancer
Abstract
The role of breast image analysis in radiologists' interpretation tasks in cancer risk assessment, detection, diagnosis, and treatment continues to expand. Breast image analysis methods include segmentation, feature extraction techniques, classifier design, biomechanical modeling, image registration, motion correction, and rigorous methods of evaluation. We present a review of the current status of these task-based image analysis methods, which are being developed for the various image acquisition modalities of mammography, tomosynthesis, computed tomography, ultrasound, and magnetic resonance imaging. Depending on the task, image-based biomarkers from such quantitative image analysis may include morphological, textural, and kinetic characteristics and may depend on accurate modeling and registration of the breast images. We conclude with a discussion of future directions.
Similar articles
-
Multimodality computerized diagnosis of breast lesions using mammography and sonography.Acad Radiol. 2005 Aug;12(8):970-9. doi: 10.1016/j.acra.2005.04.014. Acad Radiol. 2005. PMID: 16087091
-
Breast image registration and deformation modeling.Crit Rev Biomed Eng. 2012;40(3):235-58. doi: 10.1615/critrevbiomedeng.v40.i3.60. Crit Rev Biomed Eng. 2012. PMID: 22694202 Review.
-
Co-registration of MR-mammography and X-ray mammography.Eur J Radiol. 2012 Sep;81 Suppl 1:S27-9. doi: 10.1016/S0720-048X(12)70011-6. Eur J Radiol. 2012. PMID: 23083591 No abstract available.
-
Magnetic resonance imaging of the breast improves detection of invasive cancer, preinvasive cancer, and premalignant lesions during surveillance of women at high risk for breast cancer.Clin Cancer Res. 2007 Oct 15;13(20):6144-52. doi: 10.1158/1078-0432.CCR-07-1270. Clin Cancer Res. 2007. PMID: 17947480
-
Breast image registration techniques: a survey.Med Biol Eng Comput. 2006 Mar;44(1-2):15-26. doi: 10.1007/s11517-005-0016-y. Med Biol Eng Comput. 2006. PMID: 16929917 Review.
Cited by
-
Digital mammographic tumor classification using transfer learning from deep convolutional neural networks.J Med Imaging (Bellingham). 2016 Jul;3(3):034501. doi: 10.1117/1.JMI.3.3.034501. Epub 2016 Aug 22. J Med Imaging (Bellingham). 2016. PMID: 27610399 Free PMC article.
-
Lessons learned in transitioning to AI in the medical imaging of COVID-19.J Med Imaging (Bellingham). 2021 Jan;8(Suppl 1):010902-10902. doi: 10.1117/1.JMI.8.S1.010902. Epub 2021 Oct 1. J Med Imaging (Bellingham). 2021. PMID: 34646912 Free PMC article. Review.
-
Radiomics robustness assessment and classification evaluation: A two-stage method demonstrated on multivendor FFDM.Med Phys. 2019 May;46(5):2145-2156. doi: 10.1002/mp.13455. Epub 2019 Mar 12. Med Phys. 2019. PMID: 30802972 Free PMC article.
-
Enhancement of mammographic density measures in breast cancer risk prediction.Cancer Epidemiol Biomarkers Prev. 2014 Jul;23(7):1314-23. doi: 10.1158/1055-9965.EPI-13-1240. Epub 2014 Apr 10. Cancer Epidemiol Biomarkers Prev. 2014. PMID: 24722754 Free PMC article.
-
Automated 3D ultrasound image segmentation to aid breast cancer image interpretation.Ultrasonics. 2016 Feb;65:51-8. doi: 10.1016/j.ultras.2015.10.023. Epub 2015 Oct 31. Ultrasonics. 2016. PMID: 26547117 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical