Learning-based prediction of visual attention for video signals - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Nov;20(11):3028-38.
doi: 10.1109/TIP.2011.2144610. Epub 2011 Apr 21.

Learning-based prediction of visual attention for video signals

Affiliations

Learning-based prediction of visual attention for video signals

Wen-Fu Lee et al. IEEE Trans Image Process. 2011 Nov.

Abstract

Visual attention, which is an important characteristic of human visual system, is a useful clue for image processing and compression applications in the real world. This paper proposes a computational scheme that adopts both low-level and high-level features to predict visual attention from video signal by machine learning. The adoption of low-level features (color, orientation, and motion) is based on the study of visual cells, and the adoption of the human face as a high-level feature is based on the study of media communications. We show that such a scheme is more robust than those using purely single low- or high-level features. Unlike conventional techniques, our scheme is able to learn the relationship between features and visual attention to avoid perceptual mismatch between the estimated salience and the actual human fixation. We also show that selecting the representative training samples according to the fixation distribution improves the efficacy of regressive training. Experimental results are shown to demonstrate the advantages of the proposed scheme.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources