Automated model-based vertebra detection, identification, and segmentation in CT images
- PMID: 19285910
- DOI: 10.1016/j.media.2009.02.004
Automated model-based vertebra detection, identification, and segmentation in CT images
Abstract
For many orthopaedic, neurological, and oncological applications, an exact segmentation of the vertebral column including an identification of each vertebra is essential. However, although bony structures show high contrast in CT images, the segmentation and labelling of individual vertebrae is challenging. In this paper, we present a comprehensive solution for automatically detecting, identifying, and segmenting vertebrae in CT images. A framework has been designed that takes an arbitrary CT image, e.g., head-neck, thorax, lumbar, or whole spine, as input and provides a segmentation in form of labelled triangulated vertebra surface models. In order to obtain a robust processing chain, profound prior knowledge is applied through the use of various kinds of models covering shape, gradient, and appearance information. The framework has been tested on 64 CT images even including pathologies. In 56 cases, it was successfully applied resulting in a final mean point-to-surface segmentation error of 1.12+/-1.04mm. One key issue is a reliable identification of vertebrae. For a single vertebra, we achieve an identification success of more than 70%. Increasing the number of available vertebrae leads to an increase in the identification rate reaching 100% if 16 or more vertebrae are shown in the image.
Similar articles
-
Spine segmentation using articulated shape models.Med Image Comput Comput Assist Interv. 2008;11(Pt 1):227-34. doi: 10.1007/978-3-540-85988-8_28. Med Image Comput Comput Assist Interv. 2008. PMID: 18979752
-
Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans.Med Image Comput Comput Assist Interv. 2012;15(Pt 3):590-8. doi: 10.1007/978-3-642-33454-2_73. Med Image Comput Comput Assist Interv. 2012. PMID: 23286179
-
Hierarchical segmentation and identification of thoracic vertebra using learning-based edge detection and coarse-to-fine deformable model.Med Image Comput Comput Assist Interv. 2010;13(Pt 1):19-27. doi: 10.1007/978-3-642-15705-9_3. Med Image Comput Comput Assist Interv. 2010. PMID: 20879210
-
Segmentation and Image Analysis of Abnormal Lungs at CT: Current Approaches, Challenges, and Future Trends.Radiographics. 2015 Jul-Aug;35(4):1056-76. doi: 10.1148/rg.2015140232. Radiographics. 2015. PMID: 26172351 Free PMC article. Review.
-
Vertebra identification using template matching modelmp and K-means clustering.Int J Comput Assist Radiol Surg. 2014 Mar;9(2):177-87. doi: 10.1007/s11548-013-0927-2. Epub 2013 Jul 24. Int J Comput Assist Radiol Surg. 2014. PMID: 23881250 Review.
Cited by
-
Large-scale image region documentation for fully automated image biomarker algorithm development and evaluation.J Med Imaging (Bellingham). 2017 Apr;4(2):024505. doi: 10.1117/1.JMI.4.2.024505. Epub 2017 Jun 7. J Med Imaging (Bellingham). 2017. PMID: 28612037 Free PMC article.
-
Landmark-guided diffeomorphic demons algorithm and its application to automatic segmentation of the whole spine and pelvis in CT images.Int J Comput Assist Radiol Surg. 2017 Mar;12(3):413-430. doi: 10.1007/s11548-016-1507-z. Epub 2016 Nov 30. Int J Comput Assist Radiol Surg. 2017. PMID: 27905028
-
An improved level set method for vertebra CT image segmentation.Biomed Eng Online. 2013 May 28;12:48. doi: 10.1186/1475-925X-12-48. Biomed Eng Online. 2013. PMID: 23714300 Free PMC article.
-
Addressing Challenges of Opportunistic Computed Tomography Bone Mineral Density Analysis.Diagnostics (Basel). 2023 Aug 2;13(15):2572. doi: 10.3390/diagnostics13152572. Diagnostics (Basel). 2023. PMID: 37568935 Free PMC article. Review.
-
Deformable multisurface segmentation of the spine for orthopedic surgery planning and simulation.J Med Imaging (Bellingham). 2020 Jan;7(1):015002. doi: 10.1117/1.JMI.7.1.015002. Epub 2020 Feb 22. J Med Imaging (Bellingham). 2020. PMID: 32118091 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical