An approach to automated detection of tumors in mammograms
- PMID: 18222769
- DOI: 10.1109/42.57760
An approach to automated detection of tumors in mammograms
Abstract
An automated system for detecting and classifying particular types of tumors in digitized mammograms is described. The analysis of mammograms is performed in two stages. First, the system identifies pixel groupings that may correspond to tumors. Next, detected pixel groupings are subjected to classification. The essence of the first processing stage is multiresolution image processing based on fuzzy pyramid linking. The second stage uses a classification hierarchy to identify benign and malignant tumors. Each level of the hierarchy uses deterministic or Bayes classifiers and a particular measurement. The measurements pertain to shape and intensity characteristics of particular types of tumors. The classification hierarchy is organized in such a way that the simplest measurements are used at the top, with the system stepping through the hierarchy only when it cannot classify the detected pixel groupings with certainty.
Similar articles
-
Contourlet-based mammography mass classification using the SVM family.Comput Biol Med. 2010 Apr;40(4):373-83. doi: 10.1016/j.compbiomed.2009.12.006. Epub 2010 Feb 23. Comput Biol Med. 2010. PMID: 20181330
-
Region-based contrast enhancement of mammograms.IEEE Trans Med Imaging. 1992;11(3):392-406. doi: 10.1109/42.158944. IEEE Trans Med Imaging. 1992. PMID: 18222882
-
BioVision: an application for the automated image analysis of histological sections.Neurobiol Aging. 2006 Oct;27(10):1462-76. doi: 10.1016/j.neurobiolaging.2005.08.023. Epub 2005 Nov 4. Neurobiol Aging. 2006. PMID: 16271803
-
Detection of stellate distortions in mammograms.IEEE Trans Med Imaging. 1996;15(5):611-9. doi: 10.1109/42.538938. IEEE Trans Med Imaging. 1996. PMID: 18215942
-
Detection of microcalcifications in digital mammograms using wavelet filter and Markov random field model.Comput Med Imaging Graph. 2006 Apr;30(3):163-73. doi: 10.1016/j.compmedimag.2006.03.002. Epub 2006 May 24. Comput Med Imaging Graph. 2006. PMID: 16723208
Cited by
-
A new and fast image feature selection method for developing an optimal mammographic mass detection scheme.Med Phys. 2014 Aug;41(8):081906. doi: 10.1118/1.4890080. Med Phys. 2014. PMID: 25086537 Free PMC article.
-
Application of Radiomics and Artificial Intelligence for Lung Cancer Precision Medicine.Cold Spring Harb Perspect Med. 2021 Aug 2;11(8):a039537. doi: 10.1101/cshperspect.a039537. Cold Spring Harb Perspect Med. 2021. PMID: 33431509 Free PMC article. Review.
-
Modelling the growth of solid tumours and incorporating a method for their classification using nonlinear elasticity theory.J Math Biol. 1993;31(5):431-73. doi: 10.1007/BF00173886. J Math Biol. 1993. PMID: 8336083
-
Applying a new quantitative image analysis scheme based on global mammographic features to assist diagnosis of breast cancer.Comput Methods Programs Biomed. 2019 Oct;179:104995. doi: 10.1016/j.cmpb.2019.104995. Epub 2019 Jul 29. Comput Methods Programs Biomed. 2019. PMID: 31443864 Free PMC article.
-
Detection and Weak Segmentation of Masses in Gray-Scale Breast Mammogram Images Using Deep Learning.Yonsei Med J. 2022 Jan;63(Suppl):S63-S73. doi: 10.3349/ymj.2022.63.S63. Yonsei Med J. 2022. PMID: 35040607 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources