Use of ANN and Complexity Measures in Cognitive EEG Discrimination - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005:2005:4638-41.
doi: 10.1109/IEMBS.2005.1615504.

Use of ANN and Complexity Measures in Cognitive EEG Discrimination

Affiliations

Use of ANN and Complexity Measures in Cognitive EEG Discrimination

Fei-Yan Fan et al. Conf Proc IEEE Eng Med Biol Soc. 2005.

Abstract

The purpose of this paper is to apply BP ANN to the discrimination of three kinds of subjects (clinical diagnosed 62 schizophrenic patients, 48 depressive patients and 26 normal controls) respectively in resting state with eyes closed and three cognitive tasks, with EEG complexity measures used as feature vectors. EEG activity is recorded from 16 scalp electrodes and recordings are digitized for off-line processing. Features vectors based on Lep-Ziv complexity and classification with ANN are implemented in Matlab6.5. The comparison between the results of classifying in four states is illustrated and discussed. The classification accuracies achieved are 60% and over. The results show that ANN is an effective approach for discrimination of these three kinds of objects both in baseline and some cognitive states.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources