The parieto-collicular pathway: anatomical location and contribution to saccade generation - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Apr;17(7):1518-26.
doi: 10.1046/j.1460-9568.2003.02570.x.

The parieto-collicular pathway: anatomical location and contribution to saccade generation

Affiliations
Comparative Study

The parieto-collicular pathway: anatomical location and contribution to saccade generation

B Gaymard et al. Eur J Neurosci. 2003 Apr.

Abstract

The monkey lateral intraparietal area (LIP), involved in reflexive shifts of visual attention, has two main oculomotor outputs: towards frontal oculomotor areas and towards the superior colliculus. Recent studies suggest that these two outputs do not carry similar information. Direct LIP-collicular neurons would convey visual signals providing the oculomotor system with on-line visuo-spatial information. Parietal visuo-spatial information regarding internal stimuli would access the brainstem oculomotor circuitry through a parieto-frontal network. Consequently, an interruption of parieto-tectal neurons should affect reflexive saccades towards unpredictable targets and have little or no effect on saccades towards predictable or memorised stimuli. In order to test this hypothesis in humans, we have determined in rhesus monkeys the location of LIP-tectal fibres in the region of the internal capsule, and found that these neurons travel in the most posterior region of the posterior limb of the internal capsule. We have then tested, in seven patients with a small lesion involving this region, several oculomotor paradigms designed to determine the influence of spatial predictability on saccade accuracy and the ability to withhold reflexive saccades. In all patients, saccade accuracy was affected in unpredictable conditions but was normal when target location could be predicted or memorised. Reflexive saccade inhibition was affected only in the three patients in whom the capsular lesion had the most anterior extent. These results therefore support in humans the hypothesis that parieto-tectal neurons (i) transmit an on-line signal that is used by the oculomotor system for reflexive saccade triggering, (ii) are not crucial for the computation of internally guided saccades and (iii) are not crucial for reflexive saccade inhibition.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources