Streaming Belief Propagation for Community Detection

Streaming Belief Propagation for Community Detection

Part of Advances in Neural Information Processing Systems 34 (NeurIPS 2021)

Bibtex Paper Reviews And Public Comment »

Authors

Yuchen Wu, Jakab Tardos, Mohammadhossein Bateni, André Linhares, Filipe Miguel Goncalves de Almeida, Andrea Montanari, Ashkan Norouzi-Fard

Abstract

The community detection problem requires to cluster the nodes of a network into a small number of well-connected ‘communities’. There has been substantial recent progress in characterizing the fundamental statistical limits of community detection under simple stochastic block models. However, in real-world applications, the network structure is typically dynamic, with nodes that join over time. In this setting, we would like a detection algorithm to perform only a limited number of updates at each node arrival. While standard voting approaches satisfy this constraint, it is unclear whether they exploit the network information optimally. We introduce a simple model for networks growing over time which we refer to as streaming stochastic block model (StSBM). Within this model, we prove that voting algorithms have fundamental limitations. We also develop a streaming belief-propagation (STREAMBP) approach, for which we prove optimality in certain regimes. We validate our theoretical findings on synthetic and real data