Online to Offline Conversions, Universality and Adaptive Minibatch Sizes

Online to Offline Conversions, Universality and Adaptive Minibatch Sizes

Part of Advances in Neural Information Processing Systems 30 (NIPS 2017)

Bibtex Metadata Paper Reviews Supplemental

Authors

Kfir Levy

Abstract

We present an approach towards convex optimization that relies on a novel scheme which converts adaptive online algorithms into offline methods. In the offline optimization setting, our derived methods are shown to obtain favourable adaptive guarantees which depend on the harmonic sum of the queried gradients. We further show that our methods implicitly adapt to the objective's structure: in the smooth case fast convergence rates are ensured without any prior knowledge of the smoothness parameter, while still maintaining guarantees in the non-smooth setting. Our approach has a natural extension to the stochastic setting, resulting in a lazy version of SGD (stochastic GD), where minibathces are chosen adaptively depending on the magnitude of the gradients. Thus providing a principled approach towards choosing minibatch sizes.