Continuous DR-submodular Maximization: Structure and Algorithms

Continuous DR-submodular Maximization: Structure and Algorithms

Part of Advances in Neural Information Processing Systems 30 (NIPS 2017)

Bibtex Metadata Paper Reviews Supplemental

Authors

An Bian, Kfir Levy, Andreas Krause, Joachim M. Buhmann

Abstract

DR-submodular continuous functions are important objectives with wide real-world applications spanning MAP inference in determinantal point processes (DPPs), and mean-field inference for probabilistic submodular models, amongst others. DR-submodularity captures a subclass of non-convex functions that enables both exact minimization and approximate maximization in polynomial time. In this work we study the problem of maximizing non-monotone DR-submodular continuous functions under general down-closed convex constraints. We start by investigating geometric properties that underlie such objectives, e.g., a strong relation between (approximately) stationary points and global optimum is proved. These properties are then used to devise two optimization algorithms with provable guarantees. Concretely, we first devise a "two-phase'' algorithm with 1/4 approximation guarantee. This algorithm allows the use of existing methods for finding (approximately) stationary points as a subroutine, thus, harnessing recent progress in non-convex optimization. Then we present a non-monotone Frank-Wolfe variant with 1/e approximation guarantee and sublinear convergence rate. Finally, we extend our approach to a broader class of generalized DR-submodular continuous functions, which captures a wider spectrum of applications. Our theoretical findings are validated on synthetic and real-world problem instances.