Fizika – Vikipedija Pereiti prie turinio

Fizika

Straipsnis iš Vikipedijos, laisvosios enciklopedijos.
Portal
Vikisritis: Fizika
Fizikos reiškinių įvairovė

Fizika (gr. φυσικός (physikos): natūralus, φύσις (physis): gamta)[1][2] – gamtos mokslas, tiriantis visas materijos formas:[2] nuo submikroskopinių dalelių, iš kurių sudarytos visos įprastinės medžiagos (dalelių fizika), iki visos materialios Visatos elgesio (kosmologija).[3]

Kai kurios fizikos studijuojamos savybės yra bendros visoms materialioms sistemoms, pavyzdžiui, energijos tvermės dėsnis. Tokios savybės kartais yra vadinamos dėsniais. Taip pat fizika kartais vadinama „fundamentaliuoju mokslu“,[4] nes visi kiti gamtos mokslai – (biologija, chemija, geologija ir pan.) – tiria tam tikras materialias sistemas, kurios savo ruožtu paklūsta fizikos dėsniams. Pavyzdžiui, chemija yra molekulių ir chemikalų, kurios tos molekulės sudaro, mokslas. Tų molekulių chemines savybes apibrėžia atitinkamos fizikinės savybės, tokios kaip kvantinės mechanikos, termodinamikos ir elektromagnetizmo.

Fizika yra artimai susijusi su matematika.[5][6][7] Fizikos teorijos praktiškai visuomet aprašomos matematikos lygtimis. Dažniausiai matematinis fizikos modelis yra sudėtingesnis nei kitus gamtos mokslus aprašantis matematinis modelis. Esminis skirtumas tarp fizikos ir matematikos yra tas, kad fizikos tyrimų objektas yra materialus pasaulis, o matematika tiria abstrakčius dėsnius, nepriklausomai nuo to, ar jie turi prasmę materialiam pasaulyje. Tačiau skirtumas nėra visuomet aiškus. Didelė tyrimų dalis yra tarpinė, vadinama matematine fizika, kuri tiria matematinę fizikinių teorijų struktūrą.[8]

Kasmet nuo 1901 m. fizikoje labiausiai nusipelniusiems mokslininkams įteikiama Nobelio fizikos premija.

Fizikos metodai

[redaguoti | redaguoti vikitekstą]

Fizikinių tyrimų kultūra skiriasi nuo kitų mokslų tuo, kad atskiria teoriją nuo eksperimento.[9] Pradedant XX amžiumi, dauguma fizikų specializavosi arba teorinėje fizikoje, arba eksperimentinėje fizikoje, ir labai retas buvo labai sėkmingas abiejose. Tai skiriasi nuo, pavyzdžiui, chemijos ar biologijos, kur žymiausi teoretikai buvo ir eksperimentuotojai.

Kalbant apibendrintai, teoretikai vysto teorijas, kurios gali paaiškinti eksperimentų rezultatus, o eksperimentuotojai kuria ir vykdo eksperimentus, galinčius patikrinti teorinius spėjimus. Nors teorija ir eksperimentai kuriami atskirai, jie labai susiję. Fizikoje progresas dažniausiai įvyksta tada, kai eksperimentų rezultatų negali paaiškinti esamos teorijos. Tuomet kuriamos naujos teorijos, kurios galėtų paaiškinti naujų stebėjimų rezultatus. Be eksperimentų teorinės fizikos tyrimai dažnai nukrypsta neteisinga kryptimi. Tai pagrindinis argumentas prieš M teoriją – populiarią aukštos energijos fizikos teoriją, kuriai eksperimentas dar nėra sugalvotas.[10]

Pagrindinės fizikos teorijos

[redaguoti | redaguoti vikitekstą]

Tam tikros fizikos teorijos yra taikomos visai fizikai, o ne atskiroms sritims. Kiekviena iš tų teorijų yra laikoma iš esmės teisinga savo srityje. Klasikinės mechanikos teorija tiksliai aprašo objektų, žymiai didesnių už atomus ir judančių žymiai mažesniu nei šviesos greičiu. Šios teorijos tebėra aktyviai tiriamos; pavyzdžiui, chaosas, naujas klasikinės mechanikos aspektas, buvo atrastas XX amžiuje, praėjus trims šimtams metų po to kai klasikinės mechanikos teoriją suformulavimo Izaokas Niutonas. Tačiau mažai kas tikisi kad tolimesni tyrimai įrodys, kad originali teorija yra iš esmės neteisinga. Todėl tokios teorijos yra naudojamos kaip pagrindas labiau specializuotiems tyrimams.

Teorija Pagrindinės temos Principai
Klasikinė mechanika Niutono dėsniai, Lagranžo mechanika, Hamiltono mechanika, Chaoso teorija, Skysčių dinamika. Matavimai, Erdvė, Laikas, Atskaitos sistema, Judėjimas, Kelias, Poslinkis, Greitis, Pagreitis, Masė, Judesio kiekis, Jėga, Energija, Kampinis greitis, Kampinis pagreitis, Inercijos momentas, Jėgos momentas, Judesio kiekio momentas, Tvermės dėsniai, Harmoninis osciliatorius, Banga, Darbas, Galia.
Elektromagnetizmas Elektrostatika, Elektra, Magnetizmas, Maksvelo lygtys, Optika. Elektros krūvis, Elektrinis laukas, Elektros srovė, Omo dėsnis, Gauso paviršius, Magnetinis laukas, Elektromagnetinė indukcija, Elektromagnetinis laukas, Elektromagnetinės bangos, Kintamoji elektros srovė, Magnetinis monopolis, Magnetinė skvarba.
Termodinamika ir Statistinė mechanika Šiluminis variklis, Kinetinė teorija. Bolcmano konstanta, Entropija, Entalpija, Laisva energija, Šiluma, Dalinimo funkcija, Temperatūra, Klampa, Idealiosios dujos, Vidinė energija, Termodinamikos dėsniai, Termodinaminiai procesai, Termodinaminė pusiausvyra.
Kvantinė mechanika Kelio integralo formuluotė, Šredingerio lygtis, Fotoefektas. Kvantas, Adiabatinė aproksimacija, Hamiltonianas, Tapatingos dalelės, Planko konstanta, Kvantinis sąryšis, Kvantinis harmoninis osciliatorius, Banginė funkcija, Nulinio taško energija, Operatoriai, Sukinys, Paulio draudimo principas, Heizenbergo neapibrėžtumo principas, Juodojo kūno spinduliavimas.
Reliatyvumo teorija Specialioji reliatyvumo teorija, Bendroji reliatyvumo teorija. Tapatingumo principas, Keturi-momentas, Atskaitos sistema, Erdvėlaikis, Šviesos greitis, Dvynių paradoksas, Kopėčių paradoksas, Gravitacinė banga.
Kvantinė lauko teorija Kvantinė elektrodinamika, Kvantinė chromodinamika, Silpnosios sąveikos teorija, Elektrosilpnosios sąveikos teorija, Supersimetrija. Kleino-Gordono laukas, Dirako laukas, Simetrijos principas.

Susijusios sritys

[redaguoti | redaguoti vikitekstą]

Yra daug sričių, kurios apjungia fiziką su kitom disciplinom. Pavyzdžiui, biofizika yra skirta fizikiniams principams, kurie daro įtaką biologinėms sistemoms. Kvantinė chemija tiria, kaip kvantinės mechanikos savybės kuria molekulių chemines savybes. Kai kurios iš tokių sričių yra išvardinta žemiau:

Akustika – Astronomija – Biofizika – Elektronika – Matematinė fizika

Nuo seniausių laikų paslaptis gaubė visatos keliamus klausimus – Žemės forma, kosmoso šviesulių Saulės, Mėnulio, planetų bei žvaigždžių judėjimas ir kilmė. Pirmieji astronominiai stebėjimai siekia 5000 metų, juos atliko šumerai, egiptiečiai, Indo slėnio civilizacijos, pastebėję kai kuriuos Saulės, Mėnulio ir žvaigždžių judėjimo dėsningumus. Žvaigždės ir planetos buvo sudievinamos ir neretai buvo kulto objektai. Nors bevek visi paaiškinimai apie dangaus objektų padėtį buvo nemoksliški, ankstyvieji stebėjimai paklojo pamatus vėlesniam astronomijos ir iš dalies fizikos mokslams. Pavyzdžiui, pastebėta, kad žvaigždės juda dangaus skliautu,[11] bet tai nepadėjo suprasti, kodėl planetos išsidėsčiusios vienokioje ar kitokioje padėtyje.

Labiau moksliškai paaiškinti bandyta Antikos laikais, bandant suprasti materijos elgesį ir savybes: kodėl paleisti daiktai krenta žemyn, kodėl skirtingos medžiagos pasižymi skirtingomis savybėmis ir pan. Buvo sukurta keletas teorijų ir tos teorijos buvo labiau filosofinio pobūdžio ir ne visada tikrintos naudojant mokslinio metodo sistemą, todėl dažnai klaidingos. Šių filosofinio pobūdžio teorijų ištakos siekia archajinį laikotarpį (650–480 m. pr. m. e.) Talis Miletietis atmetė antgamtinius paaiškinimus gamtos reiškiniams, pareikšdamas, kad bet kuris įvykis turi gamtinį (ne antgamtinį) priežastingumą.[12] Pirmieji gamtos filosofai iškeldavo idėjas remdamiesi samprotavimu ir stebėjimais. Sėkmingų teorijų pavyzdžiai – graikų mąstytojas Archimedas išvedė daug kiekybinių mechanikos ir hidrostatikos formulių, o Leukipo ir jo mokinio Demokrito iškelta atomizmo teorija pasitvirtino praėjus maždaug 2000 metų.[13] Pirmasis fizikos terminą panaudojo Aristotelis IV amžiuje pr. m. e.[14]

Izaokas Niutonas

XVII a. pradžioje Galilėjus pradėjo naudoti eksperimentus siekdamas patikrinti teorijų teisingumą, tuo padėdamas pagrindus moksliniam metodui. Galilėjus suformulavo ir sėkmingai patikrino keletą dinamikos rezultatų. 1687 m. Izaokas Niutonas išleido knygą „Philosophiae Naturalis Principia Mathematica“ (liet. Matematiniai gamtos filosofijos pagrindai), kurioje aprašomos dvi išsamios fizikos teorijos: Niutono judėjimo dėsniai, iš kurių kilo klasikinė mechanika ir Niutono gravitacijos dėsnis, aprašantis fundamentalią gravitacijos jėgą. Abi teorijos sutapo su eksperimentais. Knygoje taip pat aprašytos kelios skysčių dinamikos teorijos. Klasikinės mechanikos teorijos vėliau buvo išsamiai išnagrinėtos Džosefo Lui Lagranžo, Viljamo Hamiltono ir kitų, kurie sukūrė naujas formuluotes, principus bei gavo naujus rezultatus. Gravitacijos dėsnis padėjo pagrindą naujai astrofizikos sričiai, kuri pasinaudodama fizikos teorijomis nagrinėja astronominius reiškinius.

XVIII a. Robertas Boilis ir kiti išvystė termodinamikos teoriją. 1733 m. Danielius Bernulis naudojo statistinius metodus ir klasikinę mechaniką aprašyti termodinamikos rezultatus, tuo padėdamas pagrindus statistinei mechanikai. 1798 m. Bendžaminas Tompsonas pademonstravo mechaninio darbo virtimą šiluma. 1874 m. Džeimsas Preskotas Džaulis nustatė energijos tvermės dėsnį, apjungiantį šiluminę ir mechaninę energijas.

Elektros ir magnetizmo savybes tyrė Maiklas Faradėjus, Džordžas Omas ir kt. 1855 m. Džeimsas Klarkas Maksvelas sujungė abu reiškinius į vieną elektromagnetizmo teoriją, suformuluodamas Maksvelio lygtis. Ši teorija teigė, kad šviesa yra elektromagnetinė banga.

1895 m. Vilhelmas Rentgenas atrado spindulius, dabar vadinamus jo vardu. Kaip vėliau paaiškėjo, tai buvo itin aukšto dažnio elektromagnetinis spinduliavimas. 1896 m. Henris Bekerelis atrado radioaktyvumą, kurį vėliau tyrė Marija Kiuri, Pjeras Kiuri ir kt. Tai padėjo pagrindus branduolio teorijai.

1897 m. Džozefas Džonas Tomsonas atrado elektroną.[15] 1904 m. jis pasiūlė pirmą atomo modelį, pavadintą „slyvų pudingo modeliu“. Galimybę, kad elementariosios medžiagos dalelės – atomai – egzistuoja, 1808 m. pasiūlė Džonas Daltonas.

Albertas Einšteinas

1905 m. Albertas Einšteinas suformulavo specialiąją reliatyvumo teoriją, apjungdamas erdvę ir laiką į vieną – erdvėlaikį. Reliatyvumo teorija aprašo transformacijas tarp atskaitos sistemų, kurios skiriasi nuo klasikinės mechanikos. Tai tapo reliatyvistinės mechanikos pagrindu. Kai objektai juda mažais greičiais, abi teorijos sutampa. 1915 m. Einšteinas išplėtė specialiąją reliatyvumo teoriją, paaiškindamas gravitaciją bendrojoje reliatyvumo teorijoje, pastarąja pakeisdamas Niutono gravitacijos dėsnį. Objektams, turintiems mažą masę ir energiją, abi teorijos duoda vienodus rezultatus.

1911 m. Ernestas Rezerfordassklaidos eksperimentų nuspėjo atomo branduolio, kuris sudarytas iš teigiamą krūvį turinčių dalelių protonų, egzistavimą. 1932 m. Džeimas Čadvikas atrado neutronus – daleles, neturinčios krūvio.

Pradedant 1900 m., Maksas Plankas, Einšteinas, Nilsas Boras ir kiti kūrė teorijas, pagrįstas kvantavimu, siekdami paaiškinti įvairius anomalius eksperimentų rezultatus. 1925 m. Verneris Heizenbergas, 1926 m. Ervinas Šriodingeris ir Polis Dirakas formulavo kvantinę mechaniką[16], kuri pagrindė iki tol sukurtas teorijas. Kvantinėje mechanikoje fizinių dalelių matavimai yra iš prigimties atsitiktiniai, o kvantinės mechanikos formulės leidžia apskaičiuoti tų matavimų tikimybes. Ši teorija sėkmingai aprašo materijos elgesį ypač mažuose atstumuose – atominiame ir subatominiame lygyje.

Kvantinė mechanika padėjo sukurti kondensuotųjų medžiagų fizikai, kuri tiria kristalines struktūras, puslaidininkius, superlaidininkus. Šios srities pionieriumi buvo Feliksas Blochas. Jis 1928 m. sukūrė elektronų kristalinėje struktūroje elgesio kvantinį modelį.

Per Antrąjį pasaulinį karą abi kariaujančios pusės vystė branduolio fiziką siekdamos sukurti branduolinę bombą. Vokiečiai, vadovaujami Heizenbergo, tikslo nepasiekė, tačiau sąjungininkų Manheteno projektas buvo sėkmingas. JAV Enriko Fermio vadovaujama komanda 1942 m. įvykdė pirmą žmogaus sukurtą grandininę branduolinę reakciją,[17] o 1945 m. netoli Alamogordo, Nju Meksiko valstijoje, buvo detonuotas pirmas branduolinis užtaisas.

Bandant kvantinę mechaninką sujungti su specialiąja reliatyvumo teorija, buvo sukurta kvantinio lauko teorija. Penkto dešimtmečio gale ją suformulavo Ričardas Feinmanas, Džulianas Švingeris ir Frymanas Daisonas. Jie suformulavo kvantinės elektrodinamikos teoriją, kuri aprašo elektromagnetinę sąveiką.

Kvantinio lauko teorija tapo modernios dalelių fizikos pagrindu. Dalelių fizika tiria elementariąsias daleles ir fundamentalias sąveikas. 1954 m. Chen Ning Yang ir Robertas Milsas suformulavo teorijas, kurios leido sukurti standartinį modelį. Standartinis modelis, užbaigtas aštuntame XX amžiaus dešimtmetyje, sėkmingai aprašo beveik visas iki šiol atrastas elementarias daleles. 2012 m. CERN atrasta dalelė, savo savybėmis atitinkanti Higso bozoną. Jungtinės Tautos 2005 m. paskelbė pasaulio fizikos metais.

Fizika Lietuvoje

[redaguoti | redaguoti vikitekstą]

Fizikos srityje dirbo daugelis žinomų Vilniaus universiteto profesorių: Osvaldas Krygeris (1598–1665), Tomas Žebrauskas (1714–1758), Juozapas Mickevičius[18] (1743–1817), Steponas Stubelevičius[19] (1762–1814) ir kiti.[20][21]

Pirmąjį lietuvišką fizikos vadovėlį „Populiariszkas rankvedis fyzikos“ sudarė ir 1899 m. Jungtinėse Amerikos Valstijose išleido Petras Vileišis. Taip pat prie fizikos populiarinimo tarp lietuvių prisidėjo Juozas Adomaitis-Šernas ir Jonas Šliūpas.[21]

1920–1922 m. Lietuvoje veikiančiuose Aukštuosiuose kursuose Kaune buvo Fizikos ir matematikos skyrius, turėjęs ir Fizikos kabinetą. Fiziką dėstė Vincas Čepinskis, nuo 1922 m. ėjęs pirmojo Matematikos-gamtos fakulteto Fizikos katedros vedėjo pareigas įkūrus Lietuvos universitetą. 1940 m. Matematikos-gamtos fakultetas perkeltas į Vilniaus universitetą. Sovietmečiu įvairaus pobūdžio taikomieji ir moksliniai tyrimai vykdyti Vilniaus valstybiniame V. Kapsuko universitete ir Kauno politechnikos institute[21].

Fizikos specialistus rengia Vilniaus universitetas, Kauno technologijos universitetas, Vytauto Didžiojo universitetas, Vytauto Didžiojo universiteto Švietimo akademija ir Vilniaus universiteto Šiaulių akademija. Prie Vilniaus universiteto Šiaulių akademijos veikia neakivaizdinė jaunųjų fizikų mokykla „Fotonas“, prie Vilniaus universiteto Fizikos fakulteto – gabių mokinių papildomojo ugdymo mokykla „Fizikos Olimpas“.[21] Lietuvoje leidžiamas svarbiausias fizikos mokslo žurnalas „Lithuanian Journal of Physics“.[21] Nuo 1952 m. kasmet rengiama Lietuvos mokinių fizikos olimpiada (LitFO). Svarbiausiais fizikos tyrimų centrais laikomi Vilniaus universiteto Fizikos fakultetas, Taikomųjų mokslų institutas, Fizinių ir technologijos mokslų centras, Fizinių ir technologijos mokslų centras, Vilniaus universiteto Teorinės fizikos ir astronomijos institutas.[21] Lietuvoje vystomos atomų fizikos, branduolio fizikos, radiologijos, molekulinės, kietojo kūno, lazerių fizikos, netiesinės optikos, lazerinės spektroskopijos, ultragarso, šiluminės, atmosferos ir kitos fizikos sritys.[21]

Ateities kryptys

[redaguoti | redaguoti vikitekstą]

Kondensuotųjų medžiagų fizikoje didžiausia neišspręsta teorinė problema yra aukštos temperatūros superlaidumo paaiškinimas. Taip pat intensyviai vykdomi eksperimentai, kuriais siekiama sukurti veikiančią spintroniką ir kvantinį kompiuterį.

Dalelių fizikoje vykdyti eksperimentais gauti rezultatai leidžia teigti, kad standartinis modelis nėra baigtas. Didžiausias to įrodymas yra tai, kad neutrinai nėra masės neturinčios dalelės. Šie eksperimentai atrodo paaiškino ilgai neišspręstą Saulės neutrinų problemą. Sunkių neutrinų fizika yra aktyviai tyrinėjama tiek teoriškai, tiek ir eksperimentiškai. Per ateinančius keletą metų pradės veikti nauji dalelių greitintuvai (plačiau – LHC) kurie leis pagreitinti daleles iki kelių teraelektronvoltų (TeV) energijų. Tokiu būdu tikimasi atrasti Higso bozono ir supersimetrinių dalelių įrodymus.

Teoriniai bandymai sujungti kvantinę mechaniką ir bendrąjį reliatyvumą į vieningą teorija – kvantinę gravitaciją– tikslas, kurio siekiama jau daugiau nei 50 metų – vis dar nedavė patenkinamų rezultatų. Šiuo metu vilčių teikia M teorija.[22]

Vis dar lieka nepaaiškinta daug astronominių reiškinių. Tarp jų ultra aukštos energijos kosminiai spinduliai ir galaktikų sukimosi problema. Sukurta keletas teorijų, bandančių paaiškinti stebėjimus: dvigubai speciali reliatyvumo teorija, modifikuota Niutono dinamika, tamsiosios medžiagos egzistavimas. 1998 metais, remiantis Ia tipo supernovų stebėjimų duomenimis, buvo aptikta, kad Visatos plėtimasis greitėja.[23][24][25] Tai privertė peržiūrėti ankstesnes kosmologines teorijas ir įvesti tamsiosios energijos sąvoką.

Kai kurios išnykusios teorijos ir pseudoteorijos:

Taip pat skaitykite

[redaguoti | redaguoti vikitekstą]
  1. Физика Didžioji Rusijos enciklopedija Archyvuota kopija 2022-04-01 iš Wayback Machine projekto.
  2. 2,0 2,1 Romualdas Karazija. Fizika. Visuotinė lietuvių enciklopedija,
  3. „physics | Definition, Types, Topics, Importance, & Facts | Britannica“. www.britannica.com (anglų). Nuoroda tikrinta 2022-04-19.
  4. https://www.ndsu.edu/fileadmin/academic/PDF_Files/2019/Physics.pdf Archyvuota kopija 2022-08-14 iš Wayback Machine projekto.
  5. „Where math meets physics“. Penn Today (anglų). Nuoroda tikrinta 2022-04-19.
  6. „Почему Математика и Физика так крепко связаны? | Музей Науки у робота Флика | Запорожье | Официальный сайт“. fleekmuseum.com (anglų). Suarchyvuotas originalas 2021-07-29. Nuoroda tikrinta 2022-04-19.
  7. „Что изучает физика? :: Почемучка. Ответы на детские вопросы“. allforchildren.ru (rusų). Nuoroda tikrinta 2022-04-19.
  8. „matematinė fizika“. www.vle.lt. Nuoroda tikrinta 2022-04-19.
  9. „Методы физики-науки. Экспериментальные методы познания | Справочная информация“. neudoff.net. Nuoroda tikrinta 2022-04-19.
  10. „What are the best arguments against string theory?“. Quora (anglų). Nuoroda tikrinta 2022-04-20.
  11. Krupp 2003
  12. Singer 2008, p. 35
  13. Gill, N.S. „Atomism – Pre-Socratic Philosophy of Atomism“. About.com. Suarchyvuota iš originalo 2014-07-10. Nuoroda tikrinta 2014 m. balandžio 1 d.
  14. Kas yra fizika? Archyvuota kopija 2022-08-12 iš Wayback Machine projekto. fizikos.fweb.lt
  15. Thomson, J.J. (1897). „Cathode Rays“. Philosophical Magazine. 44 (269): 293–316. doi:10.1080/14786449708621070
  16. Bernstein, Jeremy (November 2005). „Max Born and the quantum theory“. American Journal of Physics (anglų). 73 (11): 999–1008. Bibcode:2005AmJPh..73..999B. doi:10.1119/1.2060717. ISSN 0002-9505.
  17. Jack M. Holl. Argonne National Laboratory, 1946-96. – Urbana: University of Illinois Press, 1997. – xxii, 644 pages с. – ISBN 978-0-252-02341-5
  18. „Juozapas Mickevičius“. www.vle.lt. Nuoroda tikrinta 2022-04-19.
  19. „Steponas Stubelevičius“. www.vle.lt. Nuoroda tikrinta 2022-04-19.
  20. TARASONIS, Vytautas. Fizika: vadovėlis XI–XII klasei . Vilnius: Mokslo ir enciklopedijų leidykla, 1995, 9 p. ISBN 5-420-00253-1.
  21. 21,0 21,1 21,2 21,3 21,4 21,5 21,6 Ieva Šinavičienė. Fizika Lietuvoje. Visuotinė lietuvių enciklopedija,
  22. Zwiebach 2009
  23. „Nobel physics prize honours accelerating universe find“. BBC News. 2011-10-04.
  24. „The Nobel Prize in Physics 2011“. Nobelprize.org. Nuoroda tikrinta 2011-10-06.
  25. Peebles, P. J. E.; Ratra, Bharat (2003). „The cosmological constant and dark energy“. Reviews of Modern Physics. 75 (2): 559–606. arXiv:astro-ph/0207347. Bibcode:2003RvMP...75..559P. doi:10.1103/RevModPhys.75.559. ISSN 0034-6861. S2CID 118961123.
  26. „Светоносный эфир“. www.laser-portal.ru. Nuoroda tikrinta 2022-04-19.
  27. „Curlie - Science: Physics: Nuclear: Fusion: Cold Fusion“. curlie.org (anglų). Nuoroda tikrinta 2022-04-19.
  28. „60 Minutes: Once Considered Junk Science, Cold Fusion Gets A Second Look By Researchers“, CBS, 2009 m. balandžio 17 d, suarchyvuota iš originalo 2012-02-12
  29. Antonia Rovayo (2020-12-11). „Nikola Tesla: Dynamic Theory of Gravity“. An Idea (by Ingenious Piece) (anglų). Nuoroda tikrinta 2022-04-20.
  30. „Stabilios būsenos teorija: istorija, paaiškinimas, dabartis - Mokslas - 2022“. warbletoncouncil. Nuoroda tikrinta 2022-04-19.
Sužinokite daugiau kituose Vikimedijos projektuose
Puslapis projekte Vikiteka:
Fizika
Puslapis projekte Vikižodynas:
Fizika
Puslapis projekte Vikicitatos:
Fizika
Puslapis projekte Vikiknygos:
Fizika
Puslapis projekte Vikišaltiniai:
Fizika
Įstaigos ir organizacijos