A charge-integration readout circuit with a linear-mode silicon avalanche photodiode for a photon-number resolving detector | Optics and Spectroscopy Skip to main content
Log in

A charge-integration readout circuit with a linear-mode silicon avalanche photodiode for a photon-number resolving detector

  • Single-Photon Detection and Reconstruction (Tomography) of Optical-Field States
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A charge-integration readout circuit for a photon-number resolving detector for visible or near-infrared wavelength is presented. In the scheme, photons are converted into electric carriers by a Si APD operating in the linear mode. To read the small number of photo-carriers generated by the Si APD, a charge-integration readout circuit is used. The entire circuit operates at 77 K. The main noise of the readout circuit is attributed to dielectric polarization noise, which is dominant at the operating temperature. The noise of the readout circuit was reduced to 3.0 electrons averaged by a period of 40 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Knill, R. Laflamme, and G. J. Milburn, Nature 409, 46 (2001).

    Article  ADS  Google Scholar 

  2. D. Gottesman, A. Kitaev, and J. Preskill, Phys. Rev. A 64, 012310 (2001).

    Google Scholar 

  3. S. D. Bartlett and B. C. Sanders, Phys. Rev. A 65, 042304 (2002).

    Google Scholar 

  4. M. Sasaki, K. Wakui, J. Mizuno, et al., in Proceedings of the Seventh International Conference on Quantum Communication, Measurement and Computing, Ed. by S. M. Barnett et al. (AIP, New York, 2004) p. 44; quant-ph/0601058.

    Google Scholar 

  5. J. Kim, S. Takeuchi, Y. Yamamoto, and H. Hogue, Appl. Phys. Lett. 74, 902 (1999).

    Article  ADS  Google Scholar 

  6. S. Takeuchi, J. Kim, Y. Yamamoto, and H. Hogue, Appl. Phys. Lett. 74, 1063 (1999).

    Article  ADS  Google Scholar 

  7. E. Waks, K. Inoue, W. D. Oliver, et al., IEEE J. Sel. Top. Quantum. Electron. 9, 1502 (2003).

    Article  Google Scholar 

  8. E. Waks, E. Diamanti, B. C. Sanders, et al., Phys. Rev. Lett. 92, 113602 (2004).

  9. A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, Appl. Phys. Lett. 83, 791 (2003).

    Article  ADS  Google Scholar 

  10. D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, Phys. Rev. A 71, 061803 (2005).

    Google Scholar 

  11. D. Rosenberg, A. E. Lita, A. J. Miller, et al., IEEE Trans. Appl. Supercond. 15, 575 (2005).

    Article  Google Scholar 

  12. D. Achilles, Ch. Silberhorn, C. Sliwa, et al., Opt. Lett. 28, 2387 (2003).

    ADS  Google Scholar 

  13. M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, Phys. Rev. A 68, 043814 (2003).

    Google Scholar 

  14. M. Fujiwara, M. Sasaki, and M. Akiba, Appl. Phys. Lett. 80, 1844 (2002).

    Article  ADS  Google Scholar 

  15. M. Fujiwara and M. Sasaki, IEEE Trans. Electron. Devices 51, 2042 (2004).

    Article  Google Scholar 

  16. M. Fujiwara and M. Sasaki, Appl. Phys. Lett. 86, 111119 (2005).

    Google Scholar 

  17. M. Fujiwara and M. Sasaki, Opt. Lett. 31, 691 (2006).

    Article  ADS  Google Scholar 

  18. M. Akiba and M. Fujiwara, Opt. Lett. 28, 1010 (2003).

    Google Scholar 

  19. M. Akiba, M. Fujiwara, and M. Sasaki, Opt. Lett. 30, 123 (2005).

    Article  ADS  Google Scholar 

  20. N. E. Israeloff, Phys. Rev. B 53, R11913 (1996).

  21. M. Akiba, Appl. Phys. Lett. 71, 3236 (1997).

    Article  ADS  Google Scholar 

  22. R. J. McIntyre, IEEE Trans. Electron. Devices ED-19, 703 (1972).

    Google Scholar 

  23. When the avalanche process comes into play in a Si APD, the probability distribution usually deviates from a Gaussian shape, having a tail in higher voltage side. Then the standard deviation σ also includes the avalanche noise, and the photon number discrimination based on the CIPD becomes impossible.

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsujino, K., Akiba, M. & Sasaki, M. A charge-integration readout circuit with a linear-mode silicon avalanche photodiode for a photon-number resolving detector. Opt. Spectrosc. 103, 86–89 (2007). https://doi.org/10.1134/S0030400X07070144

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X07070144

PACS numbers

Navigation