쿨백-라이블러 발산(Kullback–Leibler divergence, KLD)은 두 확률분포의 차이를 계산하는 데에 사용하는 함수로, 어떤 이상적인 분포에 대해, 그 분포를 근사하는 다른 분포를 사용해 샘플링을 한다면 발생할 수 있는 정보 엔트로피 차이를 계산한다. 상대 엔트로피(relative entropy), 정보 획득량(information gain), 인포메이션 다이버전스(information divergence)라고도 한다. 정보이론에서는 상대 엔트로피, 기계학습의 결정 트리에서는 정보 획득량을 주로 사용한다.
쿨백-라이블러 발산은 비대칭으로, 두 값의 위치를 바꾸면 함수값도 달라진다. 따라서 이 함수는 거리 함수는 아니다.
쿨백-라이블러 발산은 어떠한 확률분포 가 있을 때, 샘플링 과정에서 그 분포를 근사적으로 표현하는 확률분포 를 대신 사용할 경우 엔트로피 변화를 의미한다. 따라서, 원래의 분포가 가지는 엔트로피 와 대신 를 사용할 때의 교차 엔트로피(cross entropy) 의 차이를 구하면,