論文サーベイ カテゴリーの記事一覧 - Sabrou-mal サブロウ丸

Sabrou-mal サブロウ丸

主にプログラミングと数学

論文サーベイ

サーベイ: On Optimizing the Communication of Model Parallelism

@article{zhuang2023optimizing, title={On optimizing the communication of model parallelism}, author={Zhuang, Yonghao and Zheng, Lianmin and Li, Zhuohan and Xing, Eric and Ho, Qirong and Gonzalez, Joseph and Stoica, Ion and Zhang, Hao and Z…

サーベイ: Synthesizing Optimal Collective Algorithms (2021)

Cai, Zixian, et al. "Synthesizing optimal collective algorithms." Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. 2021. どんなもの? 詳細 論文メタ情報 AI向けハードウェア DGX-1 Gigabyte Z52 …

サーベイ: 次世代光インターコネクトでの MPI 通信に関する研究 (2007)

滝澤真一朗, 遠藤敏夫, and 松岡聡. "次世代光インターコネクトでの MPI 通信に関する研究." コンピュータ ソフトウェア 26.3 (2009): 3_5-3_19. 概要 背景 どんなもの? 技術や手法のキモはどこ? どうやって有効だと検証した? OCS経路選択アルゴリズム Switc…

サーベイ: How Optical Technologies Can Innovate Intra Data Center Networks

Sato, Ken-ichi. "How optical technologies can innovate intra data center networks." 2021 International Conference on Computer Communications and Networks (ICCCN). IEEE, 2021. paper: https://ieeexplore.ieee.org/document/9522206 光スイッチを…

サーベイ: Topoopt: Co-optimizing network topology and parallelization strategy for distributed training jobs (2022)

Wang, Weiyang, et al. "Topoopt: Co-optimizing network topology and parallelization strategy for distributed training jobs." arXiv preprint arXiv:2202.00433 (2022). [paper] 概要 どんなもの? Metaにおける分散DNNトレーニングジョブの解析 それを…

サーベイ: Architecture and Performance Studies of 3D-Hypter-Flex-LION for Reconfigurable All-to-All HPC Networks

Liu, Gengchen, et al. "Architecture and performance studies of 3D-Hyper-FleX-LION for reconfigurable all-to-all HPC networks." SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2020. bib…

サーベイ: Which can Accelerate Distributed Machine Learning Faster: Hybrid Optical/Electrical or Optical Reconfigurable DCN?

Yang, Hao, et al. "Which can Accelerate Distributed Machine Learning Faster: Hybrid Optical/Electrical or Optical Reconfigurable DCN?." 2022 Optical Fiber Communications Conference and Exhibition (OFC). IEEE, 2022. @inproceedings{yang2022c…

サーベイ: An improved generalized conjugate residual squared (IGCRS2) algorithm suitable for distributed parallel computing

@article{zhang2015improved, title={An improved generalized conjugate residual squared (IGCRS2) algorithm suitable for distributed parallel computing}, author={Zhang, Li-Tao and Dong, Xiao-Na and Gu, Tong-Xiang and Zuo, Xian-Yu and Liu, Xin…

サーベイ: Alpa: Automating Inter- and Intra-Operator Parallelism for Distributed Deep Learning

@article{zheng2022alpa, title={Alpa: Automating Inter-and Intra-Operator Parallelism for Distributed Deep Learning}, author={Zheng, Lianmin and Li, Zhuohan and Zhang, Hao and Zhuang, Yonghao and Chen, Zhifeng and Huang, Yanping and Wang, Y…

サーベイ: Automatic Graph Partitioning for Very Large-scale Deep Learning

Tanaka, Masahiro, et al. "Automatic graph partitioning for very large-scale deep learning." 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2021. @inproceedings{tanaka2021automatic, title={Automatic gra…

サーベイ: Supporting Very Large Models using Automatic Dataflow Graph Partitioning

Wang, Minjie, Chien-chin Huang, and Jinyang Li. "Supporting very large models using automatic dataflow graph partitioning." Proceedings of the Fourteenth EuroSys Conference 2019. 2019. @inproceedings{wang2019supporting, title={Supporting v…

サーベイ: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism

@article{shoeybi2019megatron, title={Megatron-lm: Training multi-billion parameter language models using model parallelism}, author={Shoeybi, Mohammad and Patwary, Mostofa and Puri, Raul and LeGresley, Patrick and Casper, Jared and Catanza…

サーベイ: ZeRO-Offload: Democratizing Billion-Scale Model Training

@inproceedings{ren2021zero, title={$\{$ZeRO-Offload$\}$: Democratizing $\{$Billion-Scale$\}$ Model Training}, author={Ren, Jie and Rajbhandari, Samyam and Aminabadi, Reza Yazdani and Ruwase, Olatunji and Yang, Shuangyan and Zhang, Minjia a…

サーベイ: ZeRO: Memory Optimizations Toward Training Trillion Parameter Models

@inproceedings{rajbhandari2020zero, title={Zero: Memory optimizations toward training trillion parameter models}, author={Rajbhandari, Samyam and Rasley, Jeff and Ruwase, Olatunji and He, Yuxiong}, booktitle={SC20: International Conference…

サーベイ: Training Deep Nets with Sublinear Memory Cost

Chen, Tianqi, et al. "Training deep nets with sublinear memory cost." arXiv preprint arXiv:1604.06174 (2016). @article{chen2016training, title={Training deep nets with sublinear memory cost}, author={Chen, Tianqi and Xu, Bing and Zhang, Ch…

サーベイ: GPUメモリ管理の実行時最適化による大規模深層学習の高速化 (2018)

@article{伊藤祐貴2018gpu, title={GPU メモリ管理の実行時最適化による大規模深層学習の高速化}, author={伊藤祐貴 and 今井晴基 and 根岸康 and 河内谷清久仁 and 松宮遼 and 遠藤敏夫 and others}, journal={研究報告ハイパフォーマンスコンピューティン…

サーベイ: Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM

https://dl.acm.org/doi/10.1145/3458817.3476209 paper: @inproceedings{10.1145/3458817.3476209, author = {Narayanan, Deepak and Shoeybi, Mohammad and Casper, Jared and LeGresley, Patrick and Patwary, Mostofa and Korthikanti, Vijay and Vainbr…

サーベイ: Mesh-tensorflow:Deep learning for supercomputers

@article{shazeer2018mesh, title={Mesh-tensorflow: Deep learning for supercomputers}, author={Shazeer, Noam and Cheng, Youlong and Parmar, Niki and Tran, Dustin and Vaswani, Ashish and Koanantakool, Penporn and Hawkins, Peter and Lee, Hyouk…

サーベイ: PipeDream: Generalized Pipeline Parallelism for DNN Training

https://dl.acm.org/doi/abs/10.1145/3341301.3359646?casa_token=L-sKQKrRoE4AAAAA%3AYKo9NPdnPyG6IouMN5jfTHTCYFAGORDxen32GKAteeSG-ROhqx_OX-hVOfuyHiVBXLLJH0RPujhFPEk @inproceedings{narayanan2019pipedream, title={PipeDream: generalized pipeline …

サーベイ: Gpipe: Efficient training of giant neural networks using pipeline parallelism

@article{huang2019gpipe, title={Gpipe: Efficient training of giant neural networks using pipeline parallelism}, author={Huang, Yanping and Cheng, Youlong and Bapna, Ankur and Firat, Orhan and Chen, Dehao and Chen, Mia and Lee, HyoukJoong a…

サーベイ: 分散深層学習

深層学習において、学習データと学習モデルの巨大化が最新のトレンドになっています。 そこで学習時間の削減のために複数のマシンを用いてモデルを訓練する試みが行われており、 分散深層学習(distributed deep learning)などという呼ばれ方で一つの分野にな…

サーベイ: From sequential algorithm selection to parallel portfolio selection

Lindauer, Marius, Holger Hoos, and Frank Hutter. "From sequential algorithm selection to parallel portfolio selection." International Conference on Learning and Intelligent Optimization. Springer, Cham, 2015. ポートフォリオ最適化とは(1) 資…

サーベイ: A survey on single crane scheduling in automated storage/retrieval systems

Nils Boysen and Konrad Stephan. “A survey on single crane scheduling in automated stor- age/retrieval systems”. In: European Journal of Operational Research 254.3 (2016), pp. 691– 704. issn: 0377-2217. doi: https://doi.org/10.1016/j.ejor.2…

サーベイ; Simulation study of an automated storage/retrieval system

Jeroen P. van den Berg and A.J.R.M. Gademann. “Simulation study of an automated storage/retrieval system”. In: International Journal of Production Research 38.6 (2000), pp. 1339–1356. doi: 10.1080/002075400188889. eprint: https://doi.org/1…

サーベイ; The quantum or not to quantum: towards algorithm selection in near-term quantum optimization

2020年の論文, "MaxCut algorithm selection"の検索でヒット; Moussa, Charles, Henri Calandra, and Vedran Dunjko. "To quantum or not to quantum: towards algorithm selection in near-term quantum optimization." Quantum Science and Technology 5.4…