v25.05 鸿蒙内核源码分析(并发并行) | 听过无数遍的两个概念-鸿蒙开发者社区-51CTO.COM

v25.05 鸿蒙内核源码分析(并发并行) | 听过无数遍的两个概念 原创

鸿蒙内核源码分析
发布于 2021-4-22 16:26
浏览
1收藏

子曰:“好勇疾贫,乱也。人而不仁,疾之已甚,乱也。” 《论语》:泰伯篇

v25.05 鸿蒙内核源码分析(并发并行) | 听过无数遍的两个概念-鸿蒙开发者社区

百篇博客系列篇.本篇为:
v25.xx 鸿蒙内核源码分析(并发并行篇) | 听过无数遍的两个概念

任务管理相关篇为:

v25.05 鸿蒙内核源码分析(并发并行) | 听过无数遍的两个概念-鸿蒙开发者社区

本篇说清楚并发并行

读本篇之前建议先读系列进程/线程篇,会对并行并发更深的理解.

理解并发概念

  • 并发(Concurrent):多个线程在单个核心运行,同一时间只能一个线程运行,内核不停切换线程,看起来像同时运行,实际上是线程被高速的切换.

  • 通俗好理解的比喻就是高速单行道,单行道指的是CPU的核数,跑的车就是线程(任务),进程就是管理车的公司,一个公司可以有很多台车.并发和并行跟CPU的核数有关.车道上同时只能跑一辆车,但因为指挥系统很牛,够快,在毫秒级内就能换车跑,人根本感知不到切换.所以外部的感知会是同时在进行,实现了微观上的串行,宏观上的并行.

  • 线程切换的本质是CPU要换场地上班,去哪里上班由哪里提供场地,那个场地就是任务栈,每个任务栈中保存了上班的各种材料,来了就行立马干活.那些材料就是任务上下文.简单的说就是上次活干到那里了,回来继续接着干.上下文由任务栈自己保存,CPU不管的,它来了只负责任务交过来的材料,材料显示去哪里搬砖它就去哪里搬砖.

记住一个单词就能记住并行并发的区别, 发单,发单(并发单行).

理解并行概念

并行(Parallel)每个线程分配给独立的CPU核心,线程真正的同时运行.

通俗好理解的比喻就是高速多行道,实现了微观和宏观上同时进行. 并行当然是快,人多了干活就不那么累,但干活人多了必然会带来人多的管理问题,会把问题变复杂,请想想会出现哪些问题?

理解协程概念

这里说下协程,例如go语言是有协程支持的,其实协程跟内核层没有关系,是应用层的概念.是在线程之上更高层的封装,用通俗的比喻来说就是在车内另外搞了几条车道玩.其对内核来说没有新东西,内核只负责车的调度,至于车内你想怎么弄那是应用程序自己的事.本质的区别是CPU根本没有换地方上班(没有被调度),而并发/并行都是换地方上班了.

内核如何描述CPU

    typedef struct {
        SortLinkAttribute taskSortLink;             /* task sort link */ //每个CPU core 都有一个task排序链表
        SortLinkAttribute swtmrSortLink;            /* swtmr sort link */ //每个CPU core 都有一个定时器排序链表

        UINT32 idleTaskID;                          /* idle task id */  //空闲任务ID 见于 OsIdleTaskCreate
        UINT32 taskLockCnt;                         /* task lock flag */ //任务锁的数量,当 > 0 的时候,需要重新调度了
        UINT32 swtmrHandlerQueue;                   /* software timer timeout queue id */ //软时钟超时队列句柄
        UINT32 swtmrTaskID;                         /* software timer task id */ //软时钟任务ID

        UINT32 schedFlag;                           /* pending scheduler flag */ //调度标识 INT_NO_RESCH INT_PEND_RESCH
    #if (LOSCFG_KERNEL_SMP == YES)
        UINT32 excFlag;                             /* cpu halt or exc flag */ //CPU处于停止或运行的标识
    #endif
    } Percpu;

    Percpu g_percpu[LOSCFG_KERNEL_CORE_NUM];//全局CPU数组

这是内核对CPU的描述,主要是两个排序链表,一个是任务的排序,一个是定时器的排序.什么意思?
在系列篇中多次提过,任务是内核的调度单元,注意可不是进程,虽然调度也需要进程参与,也需要切换进程,切换用户空间.但调度的核心是切换任务,每个任务的代码指令才是CPU的粮食,它吃的是一条条的指令.每个任务都必须指定取粮地址(即入口函数).

另外还有一个东西能提供入口函数,就是定时任务.很重要也很常用,没它某宝每晚9点的准时秒杀实现不了.在内核每个CPU都有自己独立的任务和定时器链表.

每次Tick的到来,处理函数会去扫描这两个链表,看有没有定时器超时的任务需要执行,有则立即执行定时任务,定时任务是所有任务中优先级最高的,0号优先级,在系列篇中有专门讲定时器任务,可自行翻看.

LOSCFG_KERNEL_SMP

# if (LOSCFG_KERNEL_SMP == YES)
# define LOSCFG_KERNEL_CORE_NUM                          LOSCFG_KERNEL_SMP_CORE_NUM //多核情况下支持的CPU核数
# else
# define LOSCFG_KERNEL_CORE_NUM                          1 //单核配置
# endif

多CPU核的操作系统有3种处理模式(SMP+AMP+BMP) 鸿蒙实现的是 SMP 的方式

  • 非对称多处理(Asymmetric multiprocessing,AMP)每个CPU内核运行一个独立的操作系统或同一操作系统的独立实例(instantiation)。

  • 对称多处理(Symmetric multiprocessing,SMP)一个操作系统的实例可以同时管理所有CPU内核,且应用并不绑定某一个内核。

  • 混合多处理(Bound multiprocessing,BMP)一个操作系统的实例可以同时管理所有CPU内核,但每个应用被锁定于某个指定的核心。

宏LOSCFG_KERNEL_SMP表示对多CPU核的支持,鸿蒙默认是打开LOSCFG_KERNEL_SMP的。

多CPU核支持

鸿蒙内核对CPU的操作见于 los_mp.c ,因文件不大,这里把代码都贴出来了.

    #if (LOSCFG_KERNEL_SMP == YES)
    //给参数CPU发送调度信号
    VOID LOS_MpSchedule(UINT32 target)//target每位对应CPU core 
    {
        UINT32 cpuid = ArchCurrCpuid();
        target &= ~(1U << cpuid);//获取除了自身之外的其他CPU
        HalIrqSendIpi(target, LOS_MP_IPI_SCHEDULE);//向目标CPU发送调度信号,核间中断(Inter-Processor Interrupts),IPI
    }
    //硬中断唤醒处理函数
    VOID OsMpWakeHandler(VOID)
    {
        /* generic wakeup ipi, do nothing */
    }
    //硬中断调度处理函数
    VOID OsMpScheduleHandler(VOID)
    {//将调度标志设置为与唤醒功能不同,这样就可以在硬中断结束时触发调度程序。
        /*
        * set schedule flag to differ from wake function,
        * so that the scheduler can be triggered at the end of irq.
        */
        OsPercpuGet()->schedFlag = INT_PEND_RESCH;//给当前Cpu贴上调度标签
    }
    //硬中断暂停处理函数
    VOID OsMpHaltHandler(VOID)
    {
        (VOID)LOS_IntLock();
        OsPercpuGet()->excFlag = CPU_HALT;//让当前Cpu停止工作

        while (1) {}//陷入空循环,也就是空闲状态
    }
    //MP定时器处理函数, 递归检查所有可用任务
    VOID OsMpCollectTasks(VOID)
    {
        LosTaskCB *taskCB = NULL;
        UINT32 taskID = 0;
        UINT32 ret;

        /* recursive checking all the available task */
        for (; taskID <= g_taskMaxNum; taskID++) { //递归检查所有可用任务
            taskCB = &g_taskCBArray[taskID];

            if (OsTaskIsUnused(taskCB) || OsTaskIsRunning(taskCB)) {
                continue;
            }

            /* 虽然任务状态不是原子的,但此检查可能成功,但无法完成删除,此删除将在下次运行之前处理
            * though task status is not atomic, this check may success but not accomplish
            * the deletion; this deletion will be handled until the next run.
            */
            if (taskCB->signal & SIGNAL_KILL) {//任务收到被干掉信号
                ret = LOS_TaskDelete(taskID);//干掉任务,回归任务池
                if (ret != LOS_OK) {
                    PRINT_WARN("GC collect task failed err:0x%x\n", ret);
                }
            }
        }
    }
    //MP(multiprocessing) 多核处理器初始化
    UINT32 OsMpInit(VOID)
    {
        UINT16 swtmrId;

        (VOID)LOS_SwtmrCreate(OS_MP_GC_PERIOD, LOS_SWTMR_MODE_PERIOD, //创建一个周期性,持续时间为 100个tick的定时器
                            (SWTMR_PROC_FUNC)OsMpCollectTasks, &swtmrId, 0);//OsMpCollectTasks为超时回调函数
        (VOID)LOS_SwtmrStart(swtmrId);//开始定时任务

        return LOS_OK;
    }
    #endif

代码一一都加上了注解,这里再一一说明下:

1.OsMpInit

多CPU核的初始化, 多核情况下每个CPU都有各自的编号, 内核有分成主次CPU, 0号默认为主CPU, OsMain()由主CPU执行,被汇编代码调用.
初始化只开了个定时任务,只干一件事就是回收不用的任务.回收的条件是任务是否收到了被干掉的信号. 例如shell命令 kill 9 14 ,意思是干掉14号线程的信号,这个信号会被线程保存起来. 可以选择自杀也可以等着被杀. 这里要注意,鸿蒙有两种情况下任务不能被干掉, 一种是系统任务不能被干掉的, 第二种是正在运行状态的任务.

2.次级CPU的初始化

同样由汇编代码调用,通过以下函数执行,完成每个CPU核的初始化

    //次级CPU初始化,本函数执行的次数由次级CPU的个数决定. 例如:在四核情况下,会被执行3次, 0号通常被定义为主CPU 执行main
    LITE_OS_SEC_TEXT_INIT VOID secondary_cpu_start(VOID)
    {
    #if (LOSCFG_KERNEL_SMP == YES)
        UINT32 cpuid = ArchCurrCpuid();

        OsArchMmuInitPerCPU();//每个CPU都需要初始化MMU

        OsCurrTaskSet(OsGetMainTask());//设置CPU的当前任务

        /* increase cpu counter */
        LOS_AtomicInc(&g_ncpu); //统计CPU的数量

        /* store each core's hwid */
        CPU_MAP_SET(cpuid, OsHwIDGet());//存储每个CPU的 hwid
        HalIrqInitPercpu(); //CPU硬件中断初始化

        OsCurrProcessSet(OS_PCB_FROM_PID(OsGetKernelInitProcessID())); //设置内核进程为CPU进程
        OsSwtmrInit();  //定时任务初始化,每个CPU维护自己的定时器队列
        OsIdleTaskCreate(); //创建空闲任务,每个CPU维护自己的任务队列
        OsStart(); //本CPU正式启动在内核层的工作
        while (1) {
            __asm volatile("wfi");//wait for Interrupt 等待中断,即下一次中断发生前都在此hold住不干活
        }//类似的还有 WFE: wait for Events 等待事件,即下一次事件发生前都在此hold住不干活
    #endif
    }

可以看出次级CPU有哪些初始化步骤:

  • 初始化MMU,OsArchMmuInitPerCPU

  • 设置当前任务 OsCurrTaskSet

  • 初始化硬件中断 HalIrqInitPercpu

  • 初始化定时器队列 OsSwtmrInit

  • 创建空任务 OsIdleTaskCreate, 外面没有任务的时CPU就待在这个空任务里自己转圈圈.

  • 开始自己的工作流程 OsStart,正式开始工作,跑任务

多CPU核还有哪些问题?

  • CPU之间抢资源的情况要怎么处理?

  • CPU之间通讯(也叫核间通讯)怎么解决?

  • 如果确保两个CPU不会同时执行同一个任务?

  • 汇编代码如何实现对各CPU的调动

请前往系列篇或直接前往内核注解代码查看.这里不再做说明.

百万汉字注解.精读内核源码

v25.05 鸿蒙内核源码分析(并发并行) | 听过无数遍的两个概念-鸿蒙开发者社区

百篇博客分析.深挖内核地基

给鸿蒙内核源码加注释过程中,整理出以下文章。内容立足源码,常以生活场景打比方尽可能多的将内核知识点置入某种场景,具有画面感,容易理解记忆。说别人能听得懂的话很重要! 百篇博客绝不是百度教条式的在说一堆诘屈聱牙的概念,那没什么意思。更希望让内核变得栩栩如生,倍感亲切.确实有难度,自不量力,但已经出发,回头已是不可能的了。 :P
与代码有bug需不断debug一样,文章和注解内容会存在不少错漏之处,请多包涵,但会反复修正,持续更新,.xx 代表修改的次数,精雕细琢,言简意赅,力求打造精品内容。

基础工具>> 双向链表 | 位图管理 | 用栈方式 | 定时器 | 原子操作 | 时间管理 |

加载运行>> ELF格式 | ELF解析 | 静态链接 | 重定位 | 进程映像 |

进程管理>> 进程管理 | 进程概念 | Fork | 特殊进程 | 进程回收 | 信号生产 | 信号消费 | Shell编辑 | Shell解析 |

编译构建>> 编译环境 | 编译过程 | 环境脚本 | 构建工具 | gn应用 | 忍者ninja |

进程通讯>> 自旋锁 | 互斥锁 | 进程通讯 | 信号量 | 事件控制 | 消息队列 |

内存管理>> 内存分配 | 内存管理 | 内存汇编 | 内存映射 | 内存规则 | 物理内存 |

前因后果>> 总目录 | 调度故事 | 内存主奴 | 源码注释 | 源码结构 | 静态站点 |

任务管理>> 时钟任务 | 任务调度 | 任务管理 | 调度队列 | 调度机制 | 线程概念 | 并发并行 | CPU | 系统调用 | 任务切换 |

文件系统>> 文件概念 | 文件系统 | 索引节点 | 挂载目录 | 根文件系统 | 字符设备 | VFS | 文件句柄 | 管道文件 |

硬件架构>> 汇编基础 | 汇编传参 | 工作模式 | 寄存器 | 异常接管 | 汇编汇总 | 中断切换 | 中断概念 | 中断管理 |

鸿蒙研究站 | 每天死磕一点点,原创不易,欢迎转载,但请注明出处。

©著作权归作者所有,如需转载,请注明出处,否则将追究法律责任
已于2021-10-9 08:21:19修改
1
收藏 1
回复
举报
2条回复
按时间正序
/
按时间倒序
鲜橙加冰
鲜橙加冰

这位兄弟的文章标题,总有一种让人……的感觉。

回复
2021-4-22 18:41:16
鸿蒙内核源码分析
鸿蒙内核源码分析 回复了 鲜橙加冰
这位兄弟的文章标题,总有一种让人……的感觉。

是不是心潮澎湃了呀

回复
2021-4-22 19:55:13
回复
    相关推荐