GitHub - PHParis/ConProKnow: Contextual Propagation of Properties for Knowledge Graphs
Skip to content

Contextual Propagation of Properties for Knowledge Graphs

License

Notifications You must be signed in to change notification settings

PHParis/ConProKnow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Contextual Propagation of Properties for Knowledge Graphs: a Sentence Embedding Based Approach

Presentation

As the number of open knowledge graphs (KGs) growths, the complexity for users to find their way with data increases. Thus, it is important to provide to users approaches that help them handling KGs while writing queries. Several works demonstrated the importance to consider identity links (owl:sameAs) between entities as context-dependant identity links. W.r.t. an identity context, some properties might be propagated and some don't. In this work, we propose an approach based on sentence embedding to find those propagable properties for a given context.

Currently, only Wikipedia is supported due to specifities of its data model.

Preliminaries

You must ensure the following requirements are met on your test machine:

  • Python 3.6
  • PyTorch
  • Then install the following pip package hdt, numpy and nltk.
pip install numpy hdt nltk

To make InferSent work, make sure you have the NLTK tokenizer by running the following once:

import nltk
nltk.download('punkt')

and in dataset directory

mkdir GloVe
curl -Lo GloVe/glove.840B.300d.zip http://nlp.stanford.edu/data/glove.840B.300d.zip
unzip GloVe/glove.840B.300d.zip -d GloVe/
mkdir fastText
curl -Lo fastText/crawl-300d-2M.vec.zip https://dl.fbaipublicfiles.com/fasttext/vectors-english/crawl-300d-2M.vec.zip
unzip fastText/crawl-300d-2M.vec.zip -d fastText/

and

curl -Lo encoder/infersent1.pkl https://dl.fbaipublicfiles.com/infersent/infersent1.pkl
curl -Lo encoder/infersent2.pkl https://dl.fbaipublicfiles.com/infersent/infersent2.p

Finally, from rdfhdt.org get Wikidata HDT file:

curl -Lo dataset/wikidata2018_09_11.hdt.gz http://gaia.infor.uva.es/hdt/wikidata/wikidata2018_09_11.hdt.gz
gunzip dataset/wikidata2018_09_11.hdt.gz
curl -Lo dataset/wikidata/wikidata2018_09_11.hdt.index.v1-1 http://gaia.infor.uva.es/hdt/wikidata/wikidata2018_09_11.hdt.index.v1-1 
gunzip dataset/wikidata2018_09_11.hdt.index.v1-1.gz

How to run the program?

To create an identity lattice:

python3 -m conproknow lattice --resource "http://www.wikidata.org/entity/Q90" --output /output_dir/  --hdt /path/to/wikidata2018_09_11.hdt

Results

The precision: Precision

The recall: Precision

About

Contextual Propagation of Properties for Knowledge Graphs

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages