使用Python生成极品家丁全本小说词云图
公开笔记对他人可见,有机会被管理员评为“优质笔记”
{{ noteEditor.content.length }}/2000
机器学习原来这么简单?10分钟Python代码我给你讲明白!
本视频通过简明的方式,将机器学习原理与泰坦尼克生存预测案例结合起来,展示了如何利用历史数据训练模型并进行未来预测。演示使用Python和Scikit-learn框架来读取数据、选择特征、训练逻辑回归模型,并进行结果预测。视频重点在于数据处理和提取、模型的训练及使用,并简要介绍了模型的两种预测方法。内容针对的是希望通过实践来深入了解机器学习的实际应用,并掌握基本机器学习流程的受众。
08:421709Python在网页上展示Excel文件
探讨了如何利用Python将Excel数据实时展示在网页上,以便实现数据的即时共享和更新。展示了一个具体案例,通过Flask框架及Pandas库将Excel文件读取后转换为HTML表格,实现了数据的Web展示。该方法优于传统的文件分享,因为它允许多用户通过网络在不同设备上查看同步更新的数据,提高了数据分享的便捷性和实时性。这种实现方案适合需要在网页上同步展示并共享表格数据的应用场景。
01:581694Python 并发编程实战,用多线程、多进程、多协程加速程序运行
本视频专注于Python的并发编程,探讨如何通过多线程和异步IO等技术显著提升程序的运行速度。分别介绍了使用网络爬虫和APP后台服务的场景,说明了并发编程在实际中减少耗费时间的重要性。讲解了线程的I/O等待问题并说明了多线程并发技术如何允许CPU在I/O操作时执行其他任务,以此实现效率优化。视频还涉及到Python中实现并发的几个关键模块,如threading、multiprocessing和asyncio,用于多线程执行、多核CPU并行和函数级异步执行。此外,还强调了线程安全和进程间通信的重要性,提出了生产者消费者模式,并强调了线程池和进程池在简化任务管理方面的实用性。适合对Python并发编程感兴趣的开发人员,提供了对初级和中级Python开发者有帮助的实用技术和策略。
05:411620搭建私人助理大模型需要什么环境?
讲者在视频中指导如何搭建Streamlit环境,突出点在于使用Python语言进行开发,推荐使用Anaconda进行一站式环境配置,易于管理包和编辑器。强调Streamlit的安装非常简单,仅需使用pip进行安装无需复杂配置。此外,还推荐了几种集成开发环境(IDE)如PyCharm、VS Code,依据个人喜好选择。这项内容适合于已经对Python有一定了解的人群,尤其是有兴趣在数据科学和Web应用快速开发领域进步的开发人员。
01:434.8万人人都有自己的智能体!从0到1构建本地开源大语言模型智能体原理与实现
本次分享主要介绍了智能体的工作原理及其在技术实现中的应用。智能体被比喻为一个具有手脚和感官的完整人,能够根据大脑的指令执行任务。通过本地大语言模型,结合VLLN框架,智能体能够调用工具、进行搜索、执行代码,并具备记忆功能。分享中还讨论了智能体在解决问题时的行动决策过程,以及如何通过JSON格式与工具进行交互。此外,还演示了使用搜索引擎和AI绘画工具的实例,并最终展示了智能体执行任务的完整流程。这些内容适合对人工智能、自然语言处理和智能体设计感兴趣的技术人员学习。
31:522.5万【职场秘籍】怎样安全的度过试用期?快来get试用期“安全攻略”!
在职场中安全度过试用期关键在于明确个人定位与积极主动的工作态度。成功案例描述了一个口才良好的学员如何因过度包装自己导致职位不匹配而被辞退,而失败案例则讲述了即便技术能力强,因缺乏主动沟通和团队协作而多次被辞退。从这些案例中可以看出,对于新人而言,既要真实展示自己的技术水平,又要积极融入团队,保持与周围同事的良好沟通。此外,及时向上级报告工作进展、遇到问题时主动寻求帮助,也是确保试用期顺利过关的重要因素。适应职场,不仅需要扎实的技术功底,还必须具备良好的工作态度与沟通协作能力。
18:382.3万还百度上搜数据集吗?记住这个地方啥数据都有!
在快速获取准确数据的需求日益逼切的背景下,传统搜索引擎和社交媒体平台常因广告和套路层出不穷而不尽人意。为解决业界数据紧缺和数字化人才的匹配问题,"cover"平台应运而生。该平台聚集了各行业积累的大量数据,积极搭建连接数字化需求与解决方案提供者之间的桥梁。通过提交数据并提供奖金激励,平台鼓励技术人员提供创新的解决方案。此外,平台不仅提供数据资源,还包含源码和完整的项目配套,为数据分析和项目开发提供了全方位的支撑。适合有志于数据分析、技术解决方案开发以及数字化转型领域的专业人士。
00:362.2万无人驾驶是怎么呈现的?
视频主要围绕深度估计技术展开,讨论了通过车载摄像头视频分析,判断物体远近的技术应用和重要性。深度估计关键在于识别图像中每个像素点的距离信息,生成类似热度图的结构,区分颜色深浅来展现物体距离。此技术在辅助驾驶、三维重建等场景中至关重要,且展示了使用单目摄像头配合神经网络模型,作为成本效益高的替代方案来进行深度估计。该内容对于追求技术与成本平衡的应用场景和对深度感知算法感兴趣的研究人员或开发者有着实际指导意义。
07:551.9万