Tableau商业智能数据分析
公开笔记对他人可见,有机会被管理员评为“优质笔记”
{{ noteEditor.content.length }}/2000
推荐课程:
Python数据分析进阶+案例实战
本视频指南针对Matplotlib这一数据可视化库的基础知识做了讲解,不仅为初学者提供了快速上手的方法,也提供了更进阶的图表绘制技巧。内容包括基本图形绘制、数学运算如何应用到图表,以及如何使用散点图、直方图、箱体图等表示数据。演示了如何通过Matplotlib和配套的数学库NumPy创建和绘制简单及复杂的图表。视频还简单介绍了如何在pandas中使用图表,并对不同图表类型及其绘制方式进行了说明,适合需要在图形界面展示数据的开发者以及进行数据分析的专业人士。
10:567334知识图谱快速入门与案例实战
本节课程聚焦于知识图谱的构建和图数据库Neo4j的安装过程。首先介绍了知识图谱的概念和其对公司组织结构的应用实例。接着深入讨论了Neo4j图数据库的安装步骤,包括Java环境的准备和安装,以及通过官方网站下载适合操作系统的Java安装包。详细指导了Java环境变量配置的过程,教学内容覆盖了如何对系统变量PATH进行编辑,确保Java可执行程序能被正确找到。同时,课程指出了安装常见问题的解决方法,比如避免路径中的中文字符。此外,本课还提到了简要的java命令行测试方法,确保环境配置成功。
06:304623PowerBI商业数据分析与可视化看板快速入门
本视频讲解了微软Power BI软件的主要功能和使用方法,涉及数据可视化技术和大型企业数据展示。Power BI为用户提供了一个全自动化、易上手的数据处理和可视化解决方案,帮助用户将庞杂数据以直观形式展示,提升信息传达效率。强调通过各种图表、插件进行高级可视化,并介绍了安装Power BI的步骤,展示了如何跳过登录以使得软件功能更适合初级用户的轻度需求。内容主要围绕Power BI的易用性、高级可视化功能以及如何快速创建企业级大数据看板。
05:494208Python爬虫:Requests库的基本用法
本次内容聚焦于使用Python的requests库进行网页数据爬取。介绍了requests库作为一个无需转基因的HTTP库,在人类获取网页数据过程的适用性与便捷性。视频解释了如何安装库,以及如何使用GET方法来获取网页对象。其中,还包含了HTTP状态码的讲解,状态码帮助开发者识别HTTP请求的响应状态。强调了文本编码的重要性,在处理爬取到的文本数据时需设置合适的编码以避免乱码问题。此外,视频提供了通过requests库对网页文本信息提取的具体代码实例演示,旨在帮助开发者理解如何使用这一工具进行数据抓取。
07:323.5万Python处理Excel数据:什么是模块、包、库
本次课程内容涉及Python语言在进行Excel数据读写时的基础知识,包括模块、包、库等概念的讲解。学员将理解模块(.py文件)、包(包含__init__.py文件的文件夹),以及库(模块和包的集合)之间的区别和联系。重点介绍了Python的强大功能,包括内置的标准库以及可以自定义或利用第三方库来扩展能力。整节课的重点是帮助学员掌握Python处理Excel数据的能力,为后续实际操作打好理论基础。适合对自动化办公感兴趣或需要在项目中进行数据处理的技术人员学习。
05:201.9万什么是Power Pivot
课程针对Power Pivot在Excel中的应用进行深入讲解,揭示它如何颠覆传统数据分析思维。Power Pivot将数据透视表功能增强,并依赖内存实现大规模数据存储,有效提高数据处理性能。通过结构化方式存储数据,配合DAX公式,增加了数据分析的维度和深度,从而支持复杂报表和可视化图表的生成。此外,课程分为基础知识、核心技术、常见函数以及实际应用四个部分,不仅提供界面功能讲解,还强调了手动编写公式的重要性。同时,明确区分了Power Pivot与Power Query各自的功能定位,指导学员根据数据状态选择合适的工具进行分析或整理。
07:431.4万大数据架构与生态圈01
视频内容聚焦于大数据技术的发展三个阶段,其中大数据1.0时代遍及2006-2009年,以Apache基金会建立的Hadoop开源项目和相关技术(如HDFS、MapReduce、HBase)为标志,主要解决大规模结构化数据批处理问题。2.0时代自2009年至2015年,以Spark为主流计算引擎,着重于结构化数据处理与多种流计算引擎的出现。而3.0时代则自2015年开始,注重非结构化数据处理、数据共享及解决数据孤岛问题,推进大数据与人工智能、云计算技术的融合。内容指出大数据技术依据不同行业需求有不同架构,并且强调技术的持续更新与业务适配性。
09:592.6万我国大数据水平处于什么阶段?
中国大数据发展正面临硬件、软件与意识层面的挑战,尚在初级阶段。发展过程包含数据准备、存储、计算、分析及价值展现五大环节。现阶段,对大数据价值认识不足,相关领域数据未充分利用。存储环节依赖于进口核心芯片;计算管理中虚拟化产品国产化程度低;分析工具及数据库主要采用外国技术。国产化进步可加强数据安全,增强价值展现。本段内容适合关注本土技术发展、数据安全及大数据应用实践的专业人士。
02:071.2万