修改配置文件
{{ interaction.likeNum == 0 ? (pageType === 'video' ? '抢首赞' : '点赞') : formatNumber(interaction.likeNum) }}
{{ interaction.collectionNum == 0 ? '收藏' : formatNumber(interaction.collectionNum) }}
{{ interaction.discussNum == 0 ? (pageType === 'video' ? '抢沙发' : '讨论') : formatNumber(interaction.discussNum) }}
分享
适合人群
具有一定深度学习基础,希望掌握YOLOv3目标检测实战方法的同学们
你将会学到
学习和学习YOLOv3目标检测训练自己的数据集方法
课程简介
告知:YOLOv4来了!与YOLOv3相比,新版本的AP(精度)和FPS(每秒帧率)分别提高了10%和12%。有意学习新课程《YOLOv4目标检测实战:训练自己的数据集》的同学,请前往https://edu.51cto.com/course/22982.html。
YOLOv3是一种基于深度学习的端到端实时目标检测方法,以速度快见长。本课程将手把手地教大家使用labelImg标注和使用YOLOv3训练自己的数据集。课程分为三个小项目:足球目标检测(单目标检测)、梅西目标检测(单目标检测)、足球和梅西同时目标检测(两目标检测)。
本课程的YOLOv3使用Darknet,在Ubuntu系统上做项目演示。包括:安装Darknet、给自己的数据集打标签、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类。
Darknet是使用C语言实现的轻型开源深度学习框架,依赖少,可移植性好,值得深入探究。
除本课程《YOLOv3目标检测实战:训练自己的数据集》外,本人推出了有关YOLOv3目标检测的系列课程,请持续关注该系列的其它课程视频,包括:
《YOLOv3目标检测实战:交通标志识别》
《YOLOv3目标检测:原理与源码解析》
《YOLOv3目标检测:网络模型改进方法》
下图是使用YOLOv3对足球和梅西同时进行目标检测的测试结果:
展开更多
{{tips.text}}
{{ noteHeaderTitle }}
笔记{{ hasMyNote ? '我的笔记' : '记笔记' }}
{{ hasMyNote ? '我的笔记' : '记笔记' }}
优质笔记
更新于:{{ $dayjs.formate('YYYY-MM-DD HH:mm:ss', item.last_uptime*1000) }}
{{ detail.username }}
公开笔记对他人可见,有机会被管理员评为“优质笔记”
{{ noteEditor.content.length }}/2000
公开笔记
保存提问
讲师收到你的提问会尽快为你解答。若选择公开提问,可以获得更多学员的帮助。
记录时间点
记录提问时视频播放的时间点,便于后续查看
公开提问
提交课程大纲
自动连播
75课时
基于深度学习的计算机视觉: 原理与实践 (上部)
59676人学习
白老师
4.9
¥188.00
23课时
YOLOv3目标检测实战:训练自己的数据集
31733人学习
白老师
4.8
¥58.00
42课时
YOLOv5+DeepSORT多目标跟踪与计数精讲
22581人学习
白老师
5.0
¥98.00
40课时
YOLOv5(PyTorch)目标检测:原理与源码解析
20932人学习
白老师
5.0
¥88.00
39课时
YOLOv3目标检测:原理与源码解析
16791人学习
白老师
4.9
¥78.00
24课时
Mask R-CNN图像实例分割实战:训练自己的数据集
16539人学习
白老师
5.0
¥88.00
31课时
YOLOv5实战中国交通标志识别
12274人学习
白老师
5.0
¥88.00
34课时
YOLOv8目标检测实战:训练自己的数据集
11732人学习
白老师
5.0
¥68.00