ECCC - TR19-004
Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Revision(s):

Revision #1 to TR19-004 | 5th June 2020 20:39

UG-hardness to NP-hardness by Losing Half

RSS-Feed




Revision #1
Authors: Amey Bhangale, Subhash Khot
Accepted on: 5th June 2020 20:39
Downloads: 474
Keywords: 


Abstract:

The $2$-to-$2$ Games Theorem of [KMS-1, DKKMS-1, DKKMS-2, KMS-2] implies that it is NP-hard to distinguish between Unique Games instances with assignment satisfying at least $(\frac{1}{2}-\varepsilon)$ fraction of the constraints $vs.$ no assignment satisfying more than $\varepsilon$ fraction of the constraints, for every constant $\varepsilon>0$. We show that the reduction can be transformed in a non-trivial way to give a stronger guarantee in the completeness case: For at least $(\frac{1}{2}-\varepsilon)$ fraction of the vertices on one side, all the constraints associated with them in the Unique Games instance can be satisfied.

We use this guarantee to convert the known UG-hardness results to NP-hardness. We show:

1. Tight inapproximability of approximating independent sets in a degree $d$ graphs within a factor of $\Omega\left(\frac{d}{\log^2 d}\right)$, where $d$ is a constant.
2. NP-hardness of approximate Maximum Acyclic Subgraph problem within a factor of $\frac{2}{3}+\varepsilon$, improving the previous ratio of $\frac{14}{15}+\varepsilon$ by Austrin et al.[AMW15].
3. For any predicate $P^{-1}(1) \subseteq [q]^k$ supporting balanced pairwise independent distribution, given a $P$-CSP instance with value at least $\frac{1}{2}-\varepsilon$, it is NP-hard to satisfy more than $\frac{|P^{-1}(1)|}{q^k}+\varepsilon$ fraction of constraints.



Changes to previous version:


Minor revision in terms of better presentation and a small fix in the proof overview section.


Paper:

TR19-004 | 11th January 2019 06:12

UG-hardness to NP-hardness by Losing Half





TR19-004
Authors: Amey Bhangale, Subhash Khot
Publication: 13th January 2019 09:45
Downloads: 1196
Keywords: 


Abstract:

The $2$-to-$2$ Games Theorem of [KMS-1, DKKMS-1, DKKMS-2, KMS-2] implies that it is NP-hard to distinguish between Unique Games instances with assignment satisfying at least $(\frac{1}{2}-\varepsilon)$ fraction of the constraints $vs.$ no assignment satisfying more than $\varepsilon$ fraction of the constraints, for every constant $\varepsilon>0$. We show that the reduction can be transformed in a non-trivial way to give a stronger guarantee in the completeness case: For at least $(\frac{1}{2}-\varepsilon)$ fraction of the vertices on one side, all the constraints associated with them in the Unique Games instance can be satisfied.

We use this guarantee to convert the known UG-hardness results to NP-hardness. We show:

1. Tight inapproximability of approximating independent sets in a degree $d$ graphs within a factor of $\Omega\left(\frac{d}{\log^2 d}\right)$, where $d$ is a constant.
2. NP-hardness of approximate Maximum Acyclic Subgraph problem within a factor of $\frac{2}{3}+\varepsilon$, improving the previous ratio of $\frac{14}{15}+\varepsilon$ by Austrin et al.[AMW15].
3. For any predicate $P^{-1}(1) \subseteq [q]^k$ supporting balanced pairwise independent distribution, given a $P$-CSP instance with value at least $\frac{1}{2}-\varepsilon$, it is NP-hard to satisfy more than $\frac{|P^{-1}(1)|}{q^k}+\varepsilon$ fraction of constraints.



ISSN 1433-8092 | Imprint